
Closed symbolic execution
for verifying program termination

Germán Vidal
MiST, DSIC, Universitat Politècnica de València

Camino de Vera, S/N, 46022 Valencia (Spain)
Email: gvidal@dsic.upv.es

Abstract—Symbolic execution, originally introduced as a
method for program testing and debugging, is usually incom-
plete because of infinite symbolic execution paths. In this work,
we adapt some well-known notions from partial evaluation in
order to have a complete symbolic execution scheme which
can then be used to check liveness properties like program
termination. We also introduce a representation of the symbolic
transitions as a term rewrite system so that existing termination
provers for these systems can be used to verify the termination
of the original program.

Keywords-program termination; symbolic execution; pro-
gram analysis; term rewriting; partial evaluation;

I. INTRODUCTION

There is a renewed interest in symbolic execution [1], [2],
a well-known technique for program verification, testing,
debugging, etc. In contrast to normal execution, symbolic
execution considers that the values of some input data
are unknown, i.e., some input parameters x, y, . . . take
symbolic values X,Y, . . . Because of this, symbolic ex-
ecution is often non-deterministic: at some control state-
ments, we need to follow more than one execution path
because the available information does not suffice to de-
termine the validity of a control expression, e.g., symbolic
execution may follow both branches of the conditional
“if (x>0) then exp1 else exp2” when the symbolic
value X of variable x is not constrained enough to imply
neither x>0 nor ¬(x>0). Symbolic states include a path
condition that stores the current constraints on symbolic
values, i.e., the conditions that must hold to reach a particular
execution state. E.g., after symbolically executing the above
conditional, the derived states for exp1 and exp2 would add
the conditions X>0 and X≤0, respectively, to their path
conditions.

Traditionally, formal techniques based on symbolic ex-
ecution have enforced soundness: if a symbolic state is
reached and its path condition is satisfiable, there must
be a normal execution path that reaches the corresponding
concrete state. In contrast, symbolic execution is complete
when every reachable state in a normal execution is “cov-
ered” by some symbolic state. Completeness is important
for verifying liveness properties—like program termination.
For the general case of infinite state systems, completeness

usually requires some kind of abstraction (as in infinite state
model checking).

In this work, we follow well-known principles from partial
evaluation [3] in order to design a complete symbolic execu-
tion scheme, that we call closed following the terminology
of some partial evaluation literature. In particular, given
an initial state with some missing input data, online par-
tial evaluation constructs a complete representation—usually
a graph—of all potential executions, and then extracts a
residual program from the transitions in this graph. For
this purpose, a symbolic execution method is augmented
with subsumption and abstraction operators (similarly to
those in [4], [5]) in order to guarantee that the computed
representation is finite (see, e.g., Gallagher’s basic algorithm
parameterized by an unfolding rule and an abstraction oper-
ator [6]).

Analogously to the extraction of residual code in partial
evaluation, we propose the extraction of rewrite rules [7]
from the transitions in the symbolic execution graph. In
this way, we obtain a rewrite system that can be used to
analyze the termination (or other liveness properties) of the
original program in a unified and well-known setting (where
powerful termination provers exist for rewrite systems, e.g.,
AProVE [8]). An advantage of this approach is that one
can “compile in” the language semantics in the symbolic
execution graph, so that we extract residual rules from the
semantics of the program rather than from its syntax. This
pattern is well-known in the partial evaluation literature (a
consequence of the first Futamura projection [9]).

We can find in the literature similar approaches to proving
the termination of Haskell [10], Prolog with impure features
[11] and Java bytecode [12], [13], [14] by transforming the
original termination problem into the problem of analyzing
the termination of a rewrite system. COSTA [15], [16], a cost
and termination analyzer for Java bytecode, follows a similar
pattern but produces a constraint logic program instead. All
these transformational approaches share a similar pattern:
they construct a finite-state representation of the program’s
computations (often called termination graph [13]), and a
finite set of rules is extracted from this representation.

While all these approaches have proven useful in practice,
they are tailored to the specific features of a programming

language. Unfortunately, this makes it rather difficult to
grasp the key ingredients of the approach and, thus, it is not
easy to design a termination tool for a different programming
language by following the same pattern. In this paper, we
aim at introducing a simpler but higher level scheme for
proving liveness properties like program termination which
is independent of the considered programming language. We
do so by following the principles of partial evaluation.

This language-independent approach may ease the design
of new program analyzers for different programming lan-
guages and promotes the reuse of existing analysis tools
for rewrite systems. Another advantage of defining a uni-
fied higher level scheme is that common problems (and
solutions!) can be better identified (e.g., scalability issues,
improving accuracy, etc).

We show the viability of the scheme with a proof-of-
concept implementation of a termination prover for simple
imperative programs with integers, basic arithmetic, assign-
ments, conditionals and jumps. Our preliminary results are
encouraging and point out the usefulness of the approach.

The remainder of this paper is organized as follows.
Section II introduces the first stage of our scheme, the
construction of a finite-state symbolic execution graph for
a given program. Then, Section III presents the extraction
of a term rewrite system from the transitions of the symbolic
execution graph. Section IV presents a proof-of-concept
implementation of a termination prover that follows the
ideas introduced in the previous sections. Finally, Section V
discusses some related work and Section VI concludes and
points out some directions for further research.

II. CLOSED SYMBOLIC EXECUTION

A. Programs and Computations

A program P is a tuple 〈Σ,Θ, T , ρ〉 where Σ is a
(possibly infinite) set of states, Θ ⊆ Σ are the initial states,
T is a finite set of transitions (corresponding to the program
statements), and ρ is a function that assigns to each transition
a binary relation over states: ρτ ⊆ Σ×Σ, for τ ∈ T . States
are modelled as pairs 〈l, σ〉 where l is the location of the
next sentence to be executed and σ is a (finite) mapping
from program variables to values (the heap). Formally,
Σ = Loc×(Var→ Value), where Loc and Var are finite sets
of program locations and variables, respectively, and Value
is a (possibly infinite) set of values.

Transition relations are (possibly infinite) sets of pairs
of states (s, s′), where s is the current state and s′ is the
next state. Transition relations can be compactly described
as logical formulas over unprimed and primed variables
corresponding to the variables of s and s′ (so that variables
not appearing in the formula are simply not constrained). We
also introduce a fresh (i.e., not appearing in the program)
variable pc which denotes the program counter.

l0 : x := input();
l1 : while x > 0 do
l2 : x := x− 1;
l3 : done

?>=<89:;l0 τ1 // ?>=<89:;l1
τ4 ��

τ2 ** ?>=<89:;l2
τ3

jj

?>=<89:;l3
Figure 1. Program WHILE and its control flow graph.

Example 2.1: Consider the simple imperative program
WHILE shown in Figure 1, where Loc = {l0, l1, l2, l3},
Var = {x}, and Value = Z ∪ {⊥}.1

Here, we consider a single initial state Θ = {〈l0, {x 7→
⊥}〉}. We have four transitions, τ1, τ2, τ3 and τ4, as shown
in the control flow graph depicted in Figure 1. The transition
relations can be defined as follows:

ρτ1 : pc = l0 ∧ pc′ = l1
ρτ2 : pc = l1 ∧ pc′ = l2 ∧ x > 0
ρτ3 : pc = l2 ∧ pc′ = l1 ∧ x′ = x− 1
ρτ4 : pc = l1 ∧ pc′ = l3 ∧ x ≤ 0

The transition relation RP of a program P is then defined
as the union of all transition relations: RP =

⋃
τ∈T ρτ .

Computations are (possibly infinite) maximal sequences of
states s0, s1, . . . such that
• s0 ∈ Θ is an initial state and
• (si, si+1) ∈ RP for all i ≥ 0 (up to the length of the

sequence if it is finite).
We will denote computations as follows: s0

τ1→RP
s1

τ2→RP

. . . (we will omit the transition label and/or the program’s
transition relation when they are clear from the context).

Given a relation R, we let R+ denote its transitive
closure and R∗ its transitive and reflexive closure. Finite
computations s0 → s1 → . . .→ sn, n ≥ 0, can be denoted
by s0 →∗ sn (s0 →+ sn when it comprises at least one
transition).

Example 2.2: Consider again program WHILE (shown in
Fig. 1), where the transition relation RWHILE = ρτ1 ∪ ρτ2 ∪
ρτ3 ∪ ρτ4 . An example computation follows:

〈l0, {x 7→ ⊥}〉
τ1→ 〈l1, {x 7→ 2}〉 τ2→ 〈l2, {x 7→ 2}〉
τ3→ 〈l1, {x 7→ 1}〉 τ2→ 〈l2, {x 7→ 1}〉
τ3→ 〈l1, {x 7→ 0}〉 τ4→ 〈l3, {x 7→ 0}〉

B. Symbolic Execution

Symbolic execution [1], [2], originally introduced in the
context of program testing and debugging, extends nor-
mal execution in order to deal with variables bound to
symbolic expressions (instead of concrete values). E.g.,
〈l0, {x 7→ X, y 7→ Y, z 7→ 42}, true〉 is a symbolic
state where x, y are program variables bound to symbolic
values (denoted by capital letters), z is a local variable
bound to the integer 42, and true is a path condition (see
below). Program variables can also be bound to symbolic

1As it is common practice, we denote by ⊥ an undefined value.

2

expressions like X + 2 ∗ Y or arbitrary data structures
(e.g., arrays, linked lists, etc) possibly including symbolic
values denoting missing information. Control statements
often involve (non-deterministically) exploring several paths.
The path condition of symbolic states is then used to keep
track of the assumptions made on the symbolic values in
each computation thread. Therefore, the domain of symbolic
states is now

Σ] = Loc× (Var→ Value])× PathCond

where Loc and Var are the concrete (finite) sets of program
locations and variables, respectively, Value] is a (possibly
infinite) set of symbolic expressions, and PathCond is a
domain of logic formulas over the symbolic values. We will
denote symbolic states with S1, S2, etc.

There is a clear relation between concrete and symbolic
states: a symbolic state represents the set of concrete states
that can be obtained by replacing its symbolic values with
concrete values that make the path condition true.

Definition 2.3 (concretization): Let 〈l, θ, pc〉 be a sym-
bolic state. We denote by sol(θ, pc) the set of concrete
heaps obtained from θ by replacing its symbolic values with
concrete values that satisfy the path condition pc (and then
evaluating the resulting symbolic expressions, if any). Then,
the concretization function γ : Σ] 7→ ℘(Σ) is defined as
follows: γ(〈l, θ, pc〉) = {〈l, σ〉 | σ ∈ sol(θ, pc)}.
Given a concrete state s and a symbolic state S, we observe
that s ∈ γ(S) implies that s and S share the same program
location. Analogously, γ(S) ⊆ γ(S ′) implies that the
symbolic states S and S ′ share the same program location
too. Basically, only (symbolic) states that point to the same
program location are comparable. We note that our symbolic
states are similar to the notion of region in [17].

In the following, we assume a decidable partial order vγ
on symbolic states such that, if S vγ S ′ then γ(S) ⊆ γ(S ′)
(the opposite direction does not generally hold in order to
have a decidable approximation).

Definition 2.4 (symbolic program): Let P = 〈Σ,Θ, T , ρ〉
be a concrete program. We say that P] = 〈Σ],Θ], T], ρ]〉
is a symbolic version of P if the following conditions hold:

1) ∀s ∈ Σ. ∃S ∈ Σ] such that s ∈ γ(S);
2) ∀s ∈ Θ. ∃S ∈ Θ] such that s ∈ γ(S);
3) T = T] (i.e., the program sentences are not changed);
4) ∀(s, s′) ∈ ρτ and ∀S ∈ Σ] such that s ∈ γ(S) there

exists (S,S ′) ∈ ρ]τ with s′ ∈ γ(S ′) (completeness).
Note that no particular definition for ρ] is given (which
typically depends on the considered programming language);
the definition above only shows the conditions that it must
fulfill. Intuitively, conditions (1) and (2) imply that replacing
some values by symbolic expressions do not change the na-
ture of a state. Condition (3) means that symbolic execution
does not change the source program (only the input data
might be replaced by symbolic values). Finally, condition (4)

states the basic completeness of symbolic execution, which
guarantee that all concrete transitions have a counterpart in
the symbolic program (which is essential to analyze liveness
properties).

As before, the transition relation RP] of a symbolic
program P] is defined as the union of all transition relations:
RP] =

⋃
τ∈T] ρ]τ . Symbolic computations are (possibly

infinite) maximal sequences of symbolic states S0,S1, . . .
such that
• S0 ∈ Θ] is an initial symbolic state and
• (Si,Si+1) ∈ RP] for all i ≥ 0 (up to the length of the

sequence if it is finite).
In the following we assume that, given a transition
(〈l, θ, pc〉, 〈l′, θ′, pc′〉) ∈ ρ]τ , the path condition pc′ has the
form pc ∧ pc′′ where pc′′ are the new constraints (if any)
added to the path condition in the considered symbolic
execution step. Moreover, we consider that the satisfiability
of the path condition is checked at every step. If the domain
of path conditions is not decidable, we can use a time
bound so that if the constraints are not solved within this
bound, the path condition is assumed satisfiable (to preserve
completeness, which contrasts with traditional approaches
where it is assumed unsatisfiable to preserve soundness).

We will denote symbolic computations as follows:

S0
τ1,pc1
; R

P]
S1

τ2,pc2
; R

P]
S2

τ3,pc3
; R

P]
. . .

where τi is the transition of the step and pci are the new
constraints that are added to the path condition (we will omit
the transition label, the path condition, and/or the program’s
transition relation when they are clear from the context).

Example 2.5: Consider again the program WHILE shown
in Figure 1. Let WHILE] be its symbolic version. Given
the initial symbolic state 〈l0, {x 7→ ⊥}, true〉, we have for
instance the following symbolic computation:

〈l0, {x 7→ ⊥}, true〉
τ1
; 〈l1, {x 7→ X}, true〉
τ2
; 〈l2, {x 7→ X}, X > 0〉
τ3
; 〈l1, {x 7→ X − 1}, X > 0〉
τ2
; 〈l2, {x 7→ X − 1}, X > 1〉
τ3
; 〈l1, {x 7→ X − 2}, X > 1〉
τ4
; 〈l3, {x 7→ X − 2}, X = 2〉

Note that we have simplified the path condition X > 0∧X−
1 > 0 to X > 1 and the path condition X > 1∧X − 2 = 0
to X = 2.
Now, we lift the completeness of symbolic execution to
computations.

Lemma 2.6 (completeness): Let P be a program and P]

a symbolic version of P . If there exists a (possibly infinite)
computation of the form s0

τ1→RP
s1

τ2→RP
. . . then, for any

symbolic state S0 such that s0 ∈ γ(S0), we have S0
τ1
;R]

P

S1
τ2
;R]

P
. . . where si ∈ γ(Si) for all i > 0.

Proof: The claim follows straightforwardly by applying
property (4) of Definition 2.4. Consider the first transition

3

s0
τ1→RP

s1. By property (4), we have that, for all S0 ∈ Θ]

such that s0 ∈ γ(S0), the transition S0
τ1
;R]

P
S1 holds with

s1 ∈ γ(S1). The same reasoning can be applied repeatedly
so that a symbolic computation mimicking the transitions of
the concrete computation is built.

C. Closed Symbolic Execution

While previous work has emphasized the production of
underapproximations of standard execution (so that no spu-
rious errors are spotted), we are interested in producing
overapproximations so that the termination of the original
program (as well as other liveness properties) can be pre-
served through the transformation.

In general, symbolic computations do not terminate due
to the use of symbolic values (even if the concrete program
admits only finite computations).

Example 2.7: For instance, we might have the following
infinite computation with the symbolic version WHILE] of
the program in Example 1:

〈l0, {x 7→ ⊥}, true〉
τ1
; 〈l1, {x 7→ X}, true〉
τ2
; 〈l2, {x 7→ X}, X > 0〉
τ3
; 〈l1, {x 7→ X − 1}, X > 0〉
τ2
; 〈l2, {x 7→ X − 1}, X > 1〉
τ3
; 〈l1, {x 7→ X − 2}, X > 1〉
τ2
; . . .

by always choosing transition τ2 from location l1.
Computations with a symbolic program can be represented
by means of a tree-like structure as follows:

Definition 2.8 (symbolic execution graph):
Let P] = 〈Σ],Θ], T , ρ]〉 be a symbolic program. We
represent the computations of P] for an initial symbolic state
S0 ∈ Θ] by means of a (possibly infinite) directed rooted
node- and edge-labeled graph GP] :
• nodes are labeled with symbolic states from Σ] and

edges are labeled with transitions from T and logical
formulas (denoting new path conditions);

• the root node is S0;
• there is an edge labeled with τ from a node labeled with
S to a node labeled with S ′, denoted by S τ,pc−→ S ′, iff
S τ,pc

; R
P]
S ′ (we will ignore τ and/or pc when they

are clear from the context).
In the literature, one can find two basic operations to
make the symbolic execution graph finite: subsumption and
abstraction (see, e.g., [4], [5]). Basically, subsumption allows
us to stop symbolic execution when we reach a state that
is an instance of (i.e., it is subsumed by) a previous one.
Formally,

Definition 2.9 (subsumption transformation): Let P] =
〈Σ],Θ], T , ρ]〉 be a symbolic program and GP] a symbolic
execution graph for S0 ∈ Θ]. Let

S0 −→ S1 −→ . . . −→ Sn −→ . . .

be a path in the graph with n > 0. If there exists a node
labeled with Si, 0 ≤ i < n, such that Sn vγ Si, we
transform GP] into G′P] by deleting the children of Sn (and
the edges from Sn to them). We assume an implicit edge
labeled with sub from Sn to Si; we consider these edges
implicit to formally keep the graph acyclic.

We say that G′P] is obtained from GP] by subsumption.
Example 2.10: Consider the infinite computation shown

in Example 2.7. The infinite-state path in the graph can be
made finite by subsumption as follows:

〈l0, {x 7→ ⊥}, true〉
τ1−→ 〈l1, {x 7→ X}, true〉
τ2−→ 〈l2, {x 7→ X}, X > 0〉 ≡ S3
τ3−→ 〈l1, {x 7→ X − 1}, X > 0〉
τ2−→ 〈l2, {x 7→ X − 1}, X > 1〉 ≡ S5
sub−→ S3

since γ(S3) = γ(S5) = {〈l2, {x 7→ 1}〉, 〈l2, {x 7→ 2}〉, . . .}.
For realistic examples, finding opportunities for subsumption
requires appropriate heuristics. While subsumption allows
one to produce finite-state symbolic execution graphs in
many cases, this cannot be always ensured. In some cases,
a form of abstraction is also required:

Definition 2.11 (abstraction operator): Let S be a sym-
bolic state and let C be a set of symbolic states (e.g., a set of
previous symbolic states). We say that α : Σ]×℘(Σ]) 7→ Σ]

is an abstraction operator if α(S, C) = S ′ implies S v S ′.
An abstraction operator generalizes a symbolic state, often
taking into account the computation history (i.e., the previ-
ous states of the same computation).

Definition 2.12 (abstraction transformation):
Let P] = 〈Σ],Θ], T , ρ]〉 be a symbolic program and GP]

the symbolic execution graph for S0 ∈ Θ]. Let α be an
abstraction operator and let

S0 −→ S1 −→ . . . −→ Sn −→ . . .

be a path in the graph with n > 0. We transform
GP] into G′P] by deleting the children of Sn (and the
edges from Sn to them) and adding a subgraph with the
(possibly infinite) symbolic execution graph rooted with
α(Sn, {S0, . . . ,Sn−1}) and an edge labeled with abs from
Sn to α(Sn, {S0, . . . ,Sn−1}).

We say that G′P] is obtained from GP] by abstraction.
Defining appropriate heuristics for applying abstraction is
far from trivial. There is a well-known trade off between
accuracy and scalability: too much abstraction makes the
analysis useless and too little prevents us from applying it to
realistic programs. The definition of appropriate abstraction
heuristics is an interesting topic for further research that is
out of the scope of this paper.

Example 2.13: Consider the program LIST (slightly mod-
ified from [5]) shown in Figure 2 and the initial symbolic
state S0 ≡ 〈l0, {v 7→ V, l 7→ L, n 7→ ⊥}, true〉,
where V denotes an arbitrary integer and L denotes an

4

class Node {
int elem;
Node next; . . .}

Node find(int v, Node l) {
l0 : Node n := l;
l1 : while (n! = null) {
l2 : if (n.elem > v)
l3 : return n;
l4 : n := n.next;

}
l5 : return null;

}}

?>=<89:;l0
τ1 // ?>=<89:;l1

τ2
��

τ3 // ?>=<89:;l2

τ4
��

τ5 // ?>=<89:;l4

τ6

��

?>=<89:;l5 ?>=<89:;l3

〈l0, {v 7→ V, l 7→ L, n 7→ ⊥}, true〉 ≡ S0
τ1
; 〈l1, {v 7→ V, l 7→ L, n 7→ L}, true〉 ≡ S1
τ3
; 〈l2, {v 7→ V, l 7→ L, n 7→ L}, L 6= null〉 ≡ S3
τ5
; 〈l4, {v 7→ V, l 7→ L, n 7→ L}, L 6= null ∧ ¬(L.elem > V)〉 ≡ S5
τ6
; 〈l1, {v 7→ V, l 7→ L, n 7→ L.next}, L 6= null ∧ ¬(L.elem > V)〉 ≡ S6
. . .

Figure 2. Program LIST, its control flow graph and an infinite symbolic execution.

object pointing to the head of an arbitrary acyclic singly
linked list. Figure 2 shows one infinite symbolic computation
starting from this initial state.2 In contrast to the situation
in Example 2.10, subsumption is not enough to stop this
infinite computation since S6 6v S1: given the concrete state
s ≡ 〈l1, {v 7→ 42, l 7→ l1, n 7→ l1.next}〉 where l1 is
an arbitrary value of type Node, we have s ∈ γ(S6) but
s 6∈ γ(S1) (since both l and n should point to the same
value in all instances of S1).

Here, we might consider an abstraction operator α that
looks for the closest state with the same location and then
generalizes the conflicting variables, e.g.,

α(S6, {S0,S1,S3,S5}) =
〈l1, {v 7→ V, l 7→ L′, n 7→ L.next}, L 6= null ∧ L.elem>V 〉

With this step, we lose the connection between variables l
and n, which might imply a loss of accuracy. Note, however,
that this connection is not needed, e.g., for proving program
termination (as long as we know that the list is acyclic).
We observe that, in contrast to our approach, abstraction in
symbolic execution is typically used to underapproximate
the computation space, so it does not preserve complete-
ness.3

Definition 2.14 (closed symbolic execution graph): Let
P be a program and P] a symbolic version of P . Let G
be a finite graph obtained from the symbolic execution
graph GP] for S0 by a finite number of subsumption
and abstraction transformations such that every leaf is a
final state (i.e., no symbolic transition is possible) or it is
subsumed by a previous symbolic state (i.e., there is an
implicit edge to a previous state). Then, we say that G is a
closed symbolic execution graph for P .4

2We have non-consecutive state numbers since this is only part of the
symbolic execution space; the complete symbolic execution space will be
seen later in Figure 3.

3Actually, [5] already suggests in the conclusion how to compute an
overapproximation by also evaluating abstracted states, as we do.

4The terminology “closed” is taken from the partial evaluation literature.

The closedness of a symbolic execution graph guarantees
that all symbolic executions are covered in the graph (i.e.,
completeness). We note that our closed symbolic execution
graphs have some similarities with the abstract reachability
graphs of [17]; however, completeness in [17] only holds
when the graph is finite, which is not always ensured (though
some strategies are discussed).

The construction of closed symbolic execution graphs is
a well-known problem in the literature of partial evaluation,
where appropriate subsumption and abstraction operators
have been defined for many different programming lan-
guages (specially in the context of declarative programming
languages, see e.g., [18], [19], [20], [21]).

Finally, we present the main result of this section, which
shows that closed symbolic execution graphs are complete.

Theorem 2.15: Let P be a program and P] a symbolic
version of P . Let G be a closed symbolic execution graph
for S0 and let s0 ∈ γ(S0). If there exists a (possibly infinite)
computation s0

τ1→RP
s1

τ2→RP
. . . then there exists a

(possibly infinite) path S0 −→+ S1 −→+ . . . in G such
that si ∈ γ(Si) for all i ≥ 0 and each Si −→+ Si+1 is
either

1) Si
τi+1−→ Si+1,

2) Si
sub−→ S ′i

τi+1−→ Si+1 or
3) Si

abs−→ S ′i
τi+1−→ Si+1.

Proof: Consider an arbitrary transition si
τi+1→ RP

si+1.
By condition (4) of Definition 2.4, we have that, for any Si
such that si ∈ γ(Si), the transition Si

τi+1
; R]

P
Si+1 holds

with si+1 ∈ γ(Si+1). Now, we assume that Si belongs to
the graph (which is trivial for the first transition, and an easy
consequence of the reasoning below) and prove that either
(1), (2) or (3) holds. We consider the following possibilities:

• The graph contains an edge Si
τi+1−→ Si+1. Then, the

proof is done.
• The graph contains an edge Si

sub−→ S ′i. By Def-
inition 2.9, Si vγ S ′i and, thus, γ(Si) ⊆ γ(S ′i).
Therefore, we have si ∈ γ(S ′i). By condition (4) of

5

Definition 2.4, the transition S ′i
τi+1
; R]

P
Si+1 holds with

si+1 ∈ γ(Si+1). Since no consecutive subsumption or
abstraction steps are allowed, S ′i

τi+1−→ Si+1 belongs to
the graph and the proof is done.

• The graph contains an edge Si
abs−→ S ′i. By Defi-

nition 2.12, Si vγ S ′i and, thus, γ(Si) ⊆ γ(S ′i).
Therefore, we have si ∈ γ(S ′i) and the proof proceeds
as in the preceding case.

Note that a closed symbolic execution graph can always
be computed with a finite number of subsumption and
abstraction steps (e.g., by fixing a bound on the number
of times a program location can be visited).

III. GENERATION OF REWRITE RULES

In this section, we extract a term rewriting system (TRS
in the following) from the closed symbolic execution graph,
so that we can prove the termination of the original program
using the generated TRS.

Actually, the use of term rewriting is not essential and
other rule-based formalisms could be used. For instance,
while some approaches consider the translation to term
rewriting systems (e.g., [13], [14], [10], [22], [12], [23],
[24], [11] or [25], [26]), other approaches consider a rule-
based language similar to constraint logic programming
(e.g., [15], [16]). We have chosen to generate TRSs because
of the extensive literature on the termination of these systems
and the active research on the development of termination
provers (as witnessed by the annual termination competition
[27]).

A. Integer Term Rewriting

In particular, we consider integer term rewrite systems
(ITRS), originally introduced in [28]. These systems extend
the usual rewrite systems with integers and some basic
pre-defined operators. Here, we consider that the TRS’s
signature is split into three disjoint subsets: F , the defined
symbols of the system, C the data constructors (e.g., the
list constructors nil and cons), and Fint, that contains
the integers Z = {0,−1, 1,−2, 2, . . .}, the Boolean values
B = {true, false}, and the following pre-defined operations
• arithmetic operations (like +, −, ∗, etc),
• relational operations (like >, ≥, <, etc) and
• Boolean operations (like ∧, ∨, etc).

These operators suffice to express path conditions on in-
teger symbolic values. Constraints on data structures like
arrays or lists can be expressed by means of terms (see
below). In the following, we denote by Term(C,V) the
(possibly infinite) set of constructor terms with variables and
by Term(Fint,V) the (possibly infinite) set of arithmetic,
relational and Boolean expressions with variables.

The rules of an ITRS have the form l→ r | b, where the
following conditions hold:

• The left-hand side l has the form f(t1, . . . , tn) where
f ∈ F is a defined function symbol and ti ∈
Term(C,V) ∪ Z ∪ B is a term made of constructor
symbols and variables, an integer or a Boolean value,
for all i = 1, . . . , n.

• The right-hand side r has the form f(t1, . . . , tn) where
f ∈ F is a defined function symbol and either ti ∈
Term(C,V) is a constructor term or ti ∈ Term(Fint,V)
is an integer term, i = 1, . . . , n. Observe that no nested
defined functions are allowed in both the left- and right-
hand sides.

• The condition b is an integer constraint including vari-
ables, integers, and pre-defined operators.

A rule of the form l→ r | true is simply denoted by l→ r.
We denote variables with capital letters.

Example 3.1: The following ITRS returns a tuple with
the maximum element and the sum of all elements from a
list of positive integers (built using the list constructors nil
and cons):

mslist(L) → msl(L, 0, 0)
msl(nil,M, S) → (M,S)

msl(cons(H,T),M, S) → msl(T,M, S +H) | H ≤M
msl(cons(H,T),M, S) → msl(T,H, S +H) | H > M

By considering integer and Boolean values a special type
of 0-ary constructor symbols, and by assuming implicitly
that every ITRS contains an infinite set of pre-defined rules
PD for the pre-defined operations on integers and Booleans,
the semantics of ITRSs is a simplified form of innermost
rewriting (i.e., the counterpart of call-by-value evaluation in
functional programming).

For instance, given the ITRS of Example 3.1 above and
the initial term

mslist(cons(1, cons(3, cons(2, nil))))

we have the following reduction sequence (the reduced
subterm is underlined):

mslist(cons(1, cons(3, cons(2, nil))))
→ msl(cons(1, cons(3, cons(2, nil))), 0, 0)
→ msl(cons(3, cons(2, nil)), 1, 0 + 1)
→ msl(cons(3, cons(2, nil)), 1, 1)
→ msl(cons(2, nil), 3, 1 + 3)
→ msl(cons(2, nil), 3, 4)
→ msl(nil, 3, 4 + 2)
→ msl(nil, 3, 6)
→ (3, 6)

B. From Symbolic Execution Graphs to ITRSs

We now introduce a generic transformation that takes a
closed symbolic execution graph and returns a finite ITRS.
Basically, we produce an ITRS that mimics the transitions
of the closed symbolic execution graph. For this purpose, we
first introduce a function that produces a term representation
for states:

6

Definition 3.2 (term representation): We introduce
a function tr : Var × Σ] 7→ T (C,V) ∪ Z ∪ B that
computes the term representation tr(x,S) for a program
variable x according to a symbolic state S. We denote by
tr(x1, . . . , xn,S) the sequence tr(x1,S), . . . , tr(xn,S).

Function tr is extended to symbolic states by: tr(S) =
fS(tr(x1, . . . , xn,S)) where fS ∈ F is a fresh function sym-
bol uniquely associated to S. We also extend tr to concrete
states in the natural way: tr(x, 〈l, σ〉) = tr(x, 〈l, σ, true〉),
i.e., we apply tr to the symbolic state 〈l, σ, true〉 that just
represents 〈l, σ〉.
Let us now introduce the extraction of rewrite rules from a
closed symbolic execution graph:

Definition 3.3 (ITRS generation): Let G be a closed sym-
bolic execution graph for a program P . We construct an
ITRS as follows:
• The set of defined function symbols F contains a

function symbol fS associated to every symbolic state
S in G.

• We produce a rule5 tr(S)ϑpc → tr(S ′)ϑpcϑτ | i(pc),
for each edge S τ,pc−→ S ′, where

– ϑpc : Var 7→ Term(C,V) ∪ Z ∪ B is a substitution
that depends on the path condition pc and might
bind some variables to constructor terms, integers
or Booleans. For instance, it might bind some
variable L to a list cons(H,T) if pc includes the
constraint L 6= null. It is intended to backpropa-
gate the path condition to the left-hand side of the
rule.

– ϑτ : Var 7→ Term(Fint,V) is a substitution that
depends on the transition τ and might bind some
variable to an arithmetic expression. For instance,
it might bind a variable X to X + 1 if this is the
effect of transition τ on this variable.

– Finally, i(pc) denotes the integer constraints of the
path condition pc (note that we might have non-
integer constraints like L 6= null that are dealt
with by instantiating variables using ϑpc).

• We produce a rule of the form tr(S)→ tr(S ′), for each
edge S abs−→ S ′.

• We produce a rule of the form tr(S) →
fS′(tr(x1, . . . , xn,S)), for each edge S sub−→ S ′,
where x1, . . . , xn are the program variables.

Observe that the substitutions ϑpc are used to encode data
objects by means of terms (as it is done, e.g., in [12], [14]).
This is very natural in the context of term rewriting and
gives rise to ITRSs that accurately represent the transitions
of the original program.

In our context, we are only interested in safe extraction
methods:

5As it is common in term rewriting, we use postfix notation for
substitution application and write tϑ instead of ϑ(t).

Definition 3.4: Let P be a program, G be a closed sym-
bolic execution graph and R be the ITRS extracted from G
according to Definition 3.3 and using a term representation
function tr. We say that the extraction method is safe if the
following conditions hold:

1) s ∈ γ(S) implies that tr(s) matches tr(S) (i.e., there
exists a variable substitution ϑ such that tr(s) =
tr(S)ϑ).

2) for all concrete states s, s′ such that s τ→RP
s′ and for

all S τ−→ S ′ with s ∈ γ(S), s′ ∈ γ(S ′) and associated
rewrite rule tr(S)ϑpc → tr(S ′)ϑpcϑτ | i(pc), we have

tr(s) = tr(S)ϑpcδ → tr(S ′)ϑpcϑτδ →∗PD t = tr(s′)

where the subsequence tr(S ′)ϑϑ′δ →∗PD t is used to
evaluate integer expressions to values (either integers
or variables).

In general, one should require tr to preserve the observ-
able property one is interested in (for proving termination,
though, safeness is enough).

Example 3.5: Let us consider the closed symbolic exe-
cution graph for program LIST shown in Figure 3. The
graph is made finite using the abstraction step described in
Example 2.13.

Here, we consider a simple term representation function
tr(x, 〈l, θ, pc〉) that returns the value of a variable x using
the bindings of θ. In particular, linked lists are represented
with a list data structure built from nil and cons (i.e., nil
denotes an empty list and cons(h, t) denotes a list with head
h and tail t).

Given a path condition L = null we produce a substitution
ϑpc = {L 7→ nil}. In contrast, if the path condition is L 6=
null we have ϑpc = {L 7→ cons(H,T)} for some fresh
symbolic variables H and T . Substitutions ϑτ are not used
in this example since we have no update on integer variables.

Using this term representation, we get the ITRS depicted
in Figure 4. The termination of this TRS can be proved using
the termination prover AProVE [8] and its extension for
ITRSs [28]. The correctness of our approach then guarantees
that the original program LIST is also terminating.
Our final result states the correctness of the overall scheme
for proving termination (similar results could be proved for
other observable properties).

Theorem 3.6: Let P be a program and P] a symbolic
version of P . Let G be a closed symbolic execution graph
for S0. Let R be the ITRS obtained from G using a safe
extraction method. Let s0 ∈ γ(S0). If there exists a (possibly
infinite) computation s0

τ1→RP
s1

τ2→RP
. . . then there exists

a (possibly infinite) reduction sequence in R starting from
fS0(tr(x1, . . . , xn, s0)).

Proof: By Theorem 2.15, we have that there exists a
(possibly infinite) path S0 −→+ S1 −→+ . . . in G such
that si ∈ γ(Si) for all i ≥ 0 and each Si −→+ Si+1 is
either (1) Si

τi+1,pci+1−→ Si+1, (2) Si
sub−→ S ′i

τi+1−→ Si+1 or

7

S0 ≡ 〈l0, {v 7→ V, l 7→ L, n 7→ ⊥}, true〉

τ1

��
S1 ≡ 〈l1, {v 7→ V, l 7→ L, n 7→ L}, true〉

τ2,L=null

ttiiiiiiiiiiiiiiiiiiiiiii

τ3,L 6=null

��
S2 ≡ 〈l5, {v 7→ V, l 7→ L, n 7→ L},

L = null 〉
S3 ≡ 〈l2, {v 7→ V, l 7→ L, n 7→ L},

L 6= null 〉

τ4,L.elem>V

uujjjjjjjjjjjjjjjjjjjjj

τ5,¬(L.elem>V)

��
S4 ≡ 〈l3, {v 7→ V, l 7→ L, n 7→ L},

L 6= null ∧ L.elem > V 〉
S5 ≡ 〈l4, {v 7→ V, l 7→ L, n 7→ L},

L 6= null ∧ ¬(L.elem > V) 〉

τ6

��
S6 ≡ 〈l1, {v 7→ V, l 7→ L, n 7→ L.next},

L 6= null ∧ ¬(L.elem > V) 〉

abs

���
�
�
�

S′6 ≡ 〈l1, {v 7→ V, l 7→ L′, n 7→ L.next},
L 6= null ∧ ¬(L.elem > V) 〉

τ2,L.next=null

uukkkkkkkkkkkkkkkkkkkkk

τ3,L.next6=null

��
S7 ≡ 〈l5, {v 7→ V, l 7→ L′, n 7→ L.next},

L 6= null ∧ ¬(L.elem > V)∧
L.next = null 〉

S8 ≡ 〈 l2, {v 7→ V, l 7→ L′, n 7→ L.next},
L 6= null ∧ ¬(L.elem > V)∧
L.next 6= null 〉

τ4,L.next.elem>V

uullllllllllllllllllll

τ5,¬(L.next.elem>V)

��
S9 ≡ 〈l3, {v 7→ V, l 7→ L′, n 7→ L.next},

L 6= null ∧ ¬(L.elem > V)∧
L.next 6= null ∧ L.next.elem > V 〉

S10 ≡ 〈 l4, {v 7→ V, l 7→ L′, n 7→ L.next},
L 6= null ∧ ¬(L.elem > V)∧
L.next 6= null ∧ ¬(L.next.elem > V) 〉

τ6

��
S11 ≡ 〈 l1, {v 7→ V, l 7→ L′, n 7→ L.next.next},

L 6= null ∧ ¬(L.elem > V)∧
L.next 6= null ∧ ¬(L.next.elem > V) 〉

@A
_ _

GF

sub

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

//______________________

Figure 3. Closed symbolic execution graph for program LIST

8

fS0(V,L,⊥) → fS1(V,L, L)
fS1(V, nil, nil) → fS2(V, nil, nil)

fS1(V, cons(H,T), cons(H,T)) → fS3(V, cons(H,T), cons(H,T))
fS3(V, cons(H,T), cons(H,T)) → fS4(V, cons(H,T), cons(H,T)) | H > V
fS3(V, cons(H,T), cons(H,T)) → fS5(V, cons(H,T), cons(H,T)) | H <= V
fS5(V, cons(H,T), cons(H,T)) → fS6(V, cons(H,T), T)

fS6(V, cons(H,T), T) → fS′
6
(V,L′, T)

fS′
6
(V,L′, nil) → fS7(V,L′, nil)

fS′
6
(V,L′, cons(H,T)) → fS8(V,L′, cons(H,T))

fS8(V,L′, cons(H,T)) → fS9(V,L′, cons(H,T)) | H > V
fS8(V,L′, cons(H,T)) → fS10(V,L′, cons(H,T)) | H <= V

fS10(V,L′, cons(H,T)) → fS11(V,L′, T)
fS11(V,L′, T) → fS′

6
(V,L′, T)

Figure 4. ITRS extracted from the closed symbolic execution graph of Figure 3

(3) Si
abs−→ S ′i

τi+1−→ Si+1. Now, case (1) follows straightfor-
wardly by the soundness of the extraction method: for every
transition si

τi+1→ si+1 we have tr(si) = tr(Si)ϑpci+1δ →
tr(Si+1)ϑpci+1ϑτi+1δ →∗PD tr(si+1). Cases (2) and (3) are
immediate consequences of the soundness of the extraction
method and the fact that Si vγ S ′i and, thus, γ(Si) ⊆ γ(S ′i)
(so every term tr(si) that is an instance of tr(Si) is also an
instance of tr(S ′i)).

IV. SYMBOLIC EXECUTION-BASED TERMINATION TOOL

In order to check the viability of the ideas presented so
far, we have developed a proof-of-concept implementation
of a termination prover for simple imperative programs
with integers, basic arithmetic, assignments, conditionals
and jumps (there is no explicit iteration but it can eas-
ily be encoded with conditionals and jumps). The imple-
mented tool is called SETT: Symbolic Execution-based
Termination Tool. In its current version, only subsump-
tion has been implemented (nevertheless, we succeeded
in all the considered examples even without abstraction
steps). A web interface to test the tool is available from
http://kaz.dsic.upv.es/sett/. Let us illustrate
the application of the tool over a couple of simple (though
not trivial) examples.

Our first example is taken from [29] (here, input()
returns a random value provided by the user):

while x>0 and y>0 do
if input() = 1 then

x := x-1;
y := input();

else
y := y-1;

fi
done

Proving the termination of this program is difficult because
there is no ranking function into the natural numbers that

can prove its termination. Our tool successfully computed a
closed symbolic execution and, then, produced the following
ITRS:

fun3(x,y) -> if (x>0 and y>0)
then fun4(x,y)
else fun10(x,y)

fun4(x,y) -> if (input=1)
then fun5(x,y)
else fun8(x,y)

fun5(x,y) -> fun6(x-1,y)
fun6(x,y) -> fun7(x,input)
fun7(x,y) -> fun9(x,y)
fun8(x,y) -> fun9(x,y-1)
fun9(x,y) -> fun3(x,y)

where x, y, and input are variables. The termination of
this ITRS can be automatically proved using AProVE [8].

Another (difficult) termination problem is taken from [30]:

while x>0 and y>0 do
if (input()) then

x := x-1;
y := x;

else
x := y-2;
y := x+1;

fi
done

Again, our tool successfully computed a closed symbolic
execution and produced the following ITRS:

fun3(x,y) -> if (x>0 and y>0)
then fun4(x,y)
else fun11(x,y)

fun4(x,y) -> if (input=1)
then fun5(x,y)
else fun8(x,y)

fun5(x,y) -> fun6(x-1,y)

9

fun6(x,y) -> fun7(x,x)
fun7(x,y) -> fun10(x,y)
fun8(x,y) -> fun9(y-2,y)
fun9(x,y) -> fun10(x,x+1)
fun10(x,y) -> fun3(x,y)

whose termination was also proved using AProVE [8].
More details and examples can be found in the tool

webpage http://kaz.dsic.upv.es/sett/.

V. RELATED WORK

As mentioned in the introduction, there are already several
approaches to proving the termination of programs which
follow a similar scheme as the one we have presented. This
is the case, e.g., of the works that consider the termination of
Haskell [10], Prolog with impure features [11] and Java byte-
code [12], [13], [14] by transforming the original termination
problem into the problem of analyzing the termination of a
rewrite system. COSTA [15], [16], a cost and termination
analyzer for Java bytecode, follows a similar pattern but
produces a constraint logic program instead.

The novelty of our approach is twofold. On the one hand,
we propose a language-independent approach that may ease
the design of new program analyzers for different program-
ming languages by clarifying some common principles of
these approaches. On the other hand, we reformulate the
scheme using well-known principles from partial evaluation,
so that the vast literature on constructing finite symbolic
executions can be reused (rather than starting from scratch,
as some of the above works have done).

Proving that a program terminates for all possible inputs
is undoubtedly a fundamental problem that has been exten-
sively studied in the context of term rewriting [7], [31] and
logic programming [32], where powerful termination provers
exist (see, e.g., the results from the last termination competi-
tion [27]). In contrast, proving the termination of imperative
programs has been mostly overlooked for decades. Recent
progress in this area, however, has changed the picture and
powerful—and usable—tools have emerged [33].

One popular branch of work is based on the notion of
transition invariants [34] and applies to both sequential
and concurrent programs (see [29] for a recent survey).
These techniques aim at identifying a set of invariants
that approximate the closure of the transition relation of a
program, so that if these invariants are well founded, the
considered program is terminating. The main advantage of
this method is that his divide-and-conquer approach allows
one to search for different well-founded relations rather than
a single, monolithic one for the complete program (which
is much more difficult in practice). these methods, however,
rely on the construction of ranking functions and, thus, our
symbolic execution-based approach may be advantageous
when the control flow is complex (but can be represented
with a finite number of states without losing too much

precision). Actually, our preliminary experimental results
showed that our scheme succeeds for some typical examples
from the transition invariants literature. Unfortunately, a
detailed comparison is quite difficult since the main tool
based on transition invariants, TERMINATOR, is not pub-
licly available.

Another alternative approach considers the termination of
C programs by translating the original program to a term
rewrite system [26]. However, in contrast to our approach,
the rewrite rules are extracted from the program’s syntax.
Consequently, it is (faster but) much less accurate since no
information is propagated forward in the computations. In
order to alleviate this problem, additional static analyses are
proposed, though their impact is difficult to measure.

VI. CONCLUDING REMARKS

In this paper, we have presented a language-independent
approach to proving liveness properties by constructing a
closed symbolic execution of the program. Then, we have
proposed a method for proving program termination by
extracting a rewrite system that reproduces the transitions of
symbolic execution. We have illustrated the usefulness of our
approach by implementing a proof-of-concept termination
prover for imperative programs with integers, basic arith-
metic, assignments, conditionals and jumps. Our preliminary
results are encouraging and point out the practicality of
the approach. Hopefully, this higher level approach will be
useful to design new analysis tools—by reusing existing
techniques for term rewriting—and to get new insights on
the overall process.

Complete symbolic execution is a relatively new area, so
there are plenty of topics for further research. In particular,
we want to design refined heuristics for subsumption and
abstraction. Also, it would be worth studying the definition
of an instance of the scheme presented in this paper for a
dynamic programming language (like JavaScript or Erlang).
Proving termination in dynamic languages is a challenging
task, but our approach based on symbolic execution might be
useful to track reachable states (as witnessed by the success
of [10], [11], [12], [13], [16], [14]). An inherent limitation of
the current approach is the use of integers, since floats cannot
be represented using ITRSs. We plan to consider other rule-
based representations in order to overcome this limitation.

ACKNOWLEDGMENT

The author would like to thank the anonymous referees for
many useful comments and suggestions. This work has been
partially supported by the Spanish Ministerio de Economı́a y
Competitividad (Sec. Estado de Investigación, Desarrollo e
Innovación) under grant TIN2008-06622-C03-02 and by the
Generalitat Valenciana under grant PROMETEO/2011/052.

10

REFERENCES

[1] J. C. King, “Symbolic execution and program testing,” Com-
mun. ACM, vol. 19, no. 7, pp. 385–394, 1976.

[2] L. Clarke, “A program testing system,” in Proceedings of the
1976 Annual Conference (ACM’76), 1976, pp. 488–491.

[3] N. Jones, C. Gomard, and P. Sestoft, Partial Evaluation and
Automatic Program Generation. Prentice-Hall, Englewood
Cliffs, NJ, 1993.

[4] S. Anand, C. S. Pasareanu, and W. Visser, “Symbolic ex-
ecution with abstract subsumption checking,” in Proc. of
SPIN’06, ser. Lecture Notes in Computer Science, A. Valmari,
Ed., vol. 3925. Springer, 2006, pp. 163–181.

[5] ——, “Symbolic execution with abstraction,” STTT, vol. 11,
no. 1, pp. 53–67, 2009.

[6] J. Gallagher, “Tutorial on Specialisation of Logic Programs,”
in Proc. of PEPM’93. ACM, New York, 1993, pp. 88–98.

[7] F. Baader and T. Nipkow, Term Rewriting and All That.
Cambridge University Press, 1998.

[8] J. Giesl, P. Schneider-Kamp, and R. Thiemann, “AProVE
1.2: Automatic Termination Proofs in the Dependency Pair
Framework,” in Proc. of IJCAR’06. Springer LNCS 4130,
2006, pp. 281–286.

[9] Y. Futamura, “Partial Evaluation of Computation Process –
An Approach to a Compiler-Compiler,” Systems, Computers,
Controls, vol. 2, no. 5, pp. 45–50, 1971.

[10] J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski,
and R. Thiemann, “Automated termination proofs for Haskell
by term rewriting,” ACM Trans. Program. Lang. Syst., vol. 33,
no. 2, p. 7, 2011.

[11] P. Schneider-Kamp, J. Giesl, T. Ströder, A. Serebrenik, and
R. Thiemann, “Automated termination analysis for logic
programs with cut,” TPLP, vol. 10, no. 4-6, pp. 365–381,
2010.

[12] C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl,
“Automated Termination Analysis of Java Bytecode by Term
Rewriting,” in Proc. of RTA 2010, ser. LIPIcs, C. Lynch, Ed.,
vol. 6. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2010, pp. 259–276.

[13] M. Brockschmidt, C. Otto, C. von Essen, and J. Giesl,
“Termination Graphs for Java Bytecode,” in Verification, In-
duction, Termination Analysis, ser. Lecture Notes in Computer
Science, S. Siegler and N. Wasser, Eds., vol. 6463. Springer,
2010, pp. 17–37.

[14] M. Brockschmidt, C. Otto, and J. Giesl, “Modular Termina-
tion Proofs of Recursive Java Bytecode Programs by Term
Rewriting,” in Proc. of RTA 2011, ser. LIPIcs, vol. 10.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011,
pp. 155–170.

[15] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini,
“COSTA: Design and Implementation of a Cost and Termi-
nation Analyzer for Java Bytecode,” in Proc. of FMCO’07.
Springer LNCS 5382, 2008, pp. 113–132.

[16] E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla,
and D. Zanardini, “Termination analysis of Java bytecode,”
in Proc. of FMOODS’08, ser. Lecture Notes in Computer
Science, G. Barthe and F. S. de Boer, Eds., vol. 5051.
Springer, 2008, pp. 2–18.

[17] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy
abstraction,” in Proc. of POPL, 2002, pp. 58–70.

[18] A. Glenstrup and N. Jones, “Termination analysis and
specialization-point insertion in offline partial evaluation,”
ACM TOPLAS, vol. 27, no. 6, pp. 1147–1215, 2005.

[19] M. Leuschel, B. Martens, and D. De Schreye, “Controlling
Generalization and Polyvariance in Partial Deduction of Nor-
mal Logic Programs,” ACM Transactions on Programming
Languages and Systems, vol. 20, no. 1, pp. 208–258, 1998.

[20] B. Martens and J. Gallagher, “Ensuring Global Termination
of Partial Deduction while Allowing Flexible Polyvariance,”
in Proc. of ICLP’95. MIT Press, 1995, pp. 597–611.

[21] G. Vidal, “A Hybrid Approach to Conjunctive Partial Evalua-
tion of Logic Programs,” in Proc. of LOPSTR’11, ser. Lecture
Notes in Computer Science, M. Alpuente, Ed., vol. 6564.
Springer, 2011, pp. 200–214.

[22] J. Giesl, S. Swiderski, P. Schneider-Kamp, and R. Thiemann,
“Automated Termination Analysis for Haskell: From Term
Rewriting to Programming Languages,” in Proc. of RTA 2006,
F. Pfenning, Ed. Springer LNCS 4098, 2006, pp. 297–312.

[23] P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann,
“Automated termination analysis for logic programs by term
rewriting,” in Proc. of LOPSTR’06, ser. Lecture Notes in
Computer Science, G. Puebla, Ed., vol. 4407. Springer, 2006,
pp. 177–193.

[24] ——, “Automated termination proofs for logic programs by
term rewriting,” ACM Trans. Comput. Log., vol. 11, no. 1,
2009.

[25] S. Falke and D. Kapur, “A term rewriting approach to the
automated termination analysis of imperative programs,” in
Proc. of CADE’09, ser. Lecture Notes in Computer Science,
R. A. Schmidt, Ed., vol. 5663. Springer, 2009, pp. 277–293.

[26] S. Falke, D. Kapur, and C. Sinz, “Termination Analysis of C
Programs Using Compiler Intermediate Languages,” in Proc.
of RTA’11, ser. LIPIcs, M. Schmidt-Schauß, Ed., vol. 10.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011,
pp. 41–50.

[27] “Annual international termination competi-
tion.” [Online]. Available: http://www.termination-
portal.org/wiki/Termination Competition

[28] C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and
S. Falke, “Proving termination of integer term rewriting,” in
Proc. of RTA’09, ser. Lecture Notes in Computer Science,
R. Treinen, Ed., vol. 5595. Springer, 2009, pp. 32–47.

[29] B. Cook, A. Podelski, and A. Rybalchenko, “Proving program
termination,” Commun. ACM, vol. 54, no. 5, pp. 88–98, 2011.

11

[30] A. Podelski and A. Rybalchenko, “Transition invariants and
transition predicate abstraction for program termination,” in
Proc. of TACAS’11, ser. Lecture Notes in Computer Science,
P. A. Abdulla and K. R. M. Leino, Eds., vol. 6605. Springer,
2011, pp. 3–10.

[31] Terese, Term Rewriting Systems, ser. Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press,
2003, vol. 55.

[32] J. Lloyd, Foundations of Logic Programming. Springer-
Verlag, Berlin, 1987, second edition.

[33] G. Stix, “Send in the Terminator,” Scientific American Mag-
azine, November 2006.

[34] A. Podelski and A. Rybalchenko, “Transition invariants,” in
Proc. of LICS’04. IEEE Computer Society, 2004, pp. 32–41.

12

