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Abstract

Petri nets provide a means for modelling and verifying the behavior of concurrent systems. Program slicing
is a well-known technique in imperative programming for extracting those statements of a program that
may affect a given program point. In the context of Petri nets, computing a net slice can be seen as a graph
reachability problem. In this paper, we propose two slicing techniques for Petri nets that can be useful
to reduce the size of the considered net, thereby simplifying subsequent analysis and debugging tasks by
standard Petri net techniques.
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1 Introduction

Program slicing is a method for decomposing programs in order to extract parts of

them—called program slices—which are of interest. This technique was first defined

by Mark Weiser [20] in the context of program debugging. In particular, Weiser’s

proposal was aimed at using program slicing for isolating the program staments that

may contain a bug, so that finding this bug becomes simpler for the programmer.

In general, slicing extracts the statements that may affect some point of interest,

referred to as slicing criterion.

Let us illustrate this technique with an example taken from [19]. Figure 1(a)

shows a simple program which requests a positive integer number n and computes

the sum and the product of the first n positive integer numbers. Figure 1(b) shows a

slice of this program w.r.t. the slicing criterion (10,product), i.e., variable product

in line 10. As can be seen in the figure, all the computations that do not contribute

to the final value of the variable product have been removed from the slice.

The work by Weiser has inspired a lot of different approaches to compute slices

which include generalizations and concretizations of the initial approach. In general,

all of them are classified into two classes: static and dynamic. A slice is said to be
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(1)  read(n) ;
(2)  i := 1 ;
(3)  sum := 0 ;
(4)  product := 1 ;
(5)  while i <= n do

begin
(6)        sum := sum + i ;
(7)        product := product * i ;
(8)        i := i + 1 ;

end ;
(9)  write (sum) ;
(10) write (product) ;

(a) Example program.

read(n) ;
i := 1 ;

product := 1 ;
while i <= n do

begin

product := product * i ;
i := i + 1 ;

end ;

write (product) ;

(b) Program slice w.r.t. (10,product).

Fig. 1. Sub-figures 1(a) and 1(b) show an example of program slicing.

static if the input of the program is unknown (this is the case of Weiser’s approach).

On the other hand, it is said to be dynamic if a particular input for the program is

provided, i.e., a particular computation is considered.

In this work, we propose the use of slicing techniques to produce subnets of a

Petri net. A Petri net [13,14] is a graphic, mathematical tool used to model and

verify the behavior of systems that are concurrent, asynchronous, distributed, par-

allel, non-deterministic and/or stochastic. As a graphic tool, they provide a visual

understanding of the system and the mathematical tool facilitates its formal anal-

ysis. State space methods are the most popular approach to automatic verification

of concurrent systems. In their basic form, these methods explore the transition

system associated with the concurrent system. The transition system is a graph,

known as the reachability graph, that represents the system’s reachable states as

nodes: there is an arc from one state s to another s′, whenever the system can

evolve from s to s′. In the worst case, state space methods have to explore all the

nodes and transitions in the transition system. This makes the method useless in

practice, even though it is simple in concept, due to the state-explosion problem

that occurs when a Petri net is applied to nontrivial real problems. The technique

is costly even in bounded nets with a finite number of states since, in the worst

case, the reachable states are multiplied beyond any primitive recursive function.

For this reason, various approaches have been proposed to minimize the number of

system states to be studied in a reachability graph [17].

Program slicing has a great potential here since it allows us to syntactically re-

duce a model in such a way that the reduced model is composed only of those parts

that may influence the slicing criterion. Since it was originally defined by Weiser,

program slicing has been applied to different formalisms which are not strictly pro-

gramming languages, like attribute grammars [18], hierarchical state machines [9],

Z and CSP-OZ specifications [5,2,3], etc. Unfortunately, very little work has been

carried out on slicing for Petri nets (some notable exceptions are [4,11,15,16]). For

instance, Chang and Wang [4] present a static slicing algorithm for Petri nets that

slices out all sets of paths, known as concurrence sets, so that all paths within

the same set should be executed concurrently. In [11], a static slicing technique

for Petri nets is proposed in order to divide enormous P/T nets into manageable

modules so that the divided model can be analyzed by a compositional reachability

2



Llorens et al

analysis technique. A Petri net model is partitioned into concurrent units (Petri

net slices) using minimal invariants. In order to preserve all the information in

the original model, uncovered places should be added into minimally-connectable

concurrent units since minimal invariants may not cover all the places. Finally, in

[15,16], Rakow presents another static slicing technique to reduce the Petri net size

and, thus, lessen the problem of state explosion that occurs in the model checking

[6] of Petri nets [1]. From the best of our knowledge, there is no previous proposal

for dynamic slicing of Petri nets. This is surprising because considering an initial

marking and/or a particular sequence of transition firings would allow us to further

reduce the size of the slices and focus on a particular use of the considered Petri

net.

In this work, we explore two different alternatives for dynamic slicing of Petri

nets. Firstly, we present a slicing technique that extends the slicing criterion in

[15,16] in order to also consider an initial marking. We show that this informa-

tion can be very useful when analyzing Petri nets and, moreover, it allows us to

significantly reduce the size of the computed slice. Furthermore, we show that our

algorithm is, in the worst case, as precise as Rakow’s algorithm. This can still be

seen as a lightweight approach to slicing since its cost is bounded by the number of

transitions in the Petri net. Then, we present a second approach that further reduces

the size of the computed slice by only considering a particular execution—here, a

sequence of transition firings. Clearly, in this case the computed slice is only use-

ful to analyze the considered firing sequence. We illustrate both techniques with

examples.

2 Petri Nets

A Petri net [13,14] is a directed bipartite graph, whose two essential elements are

called places (represented by circles) and transitions (represented by bars or rect-

angles). The edges of the graph form the arcs, which are labelled with a positive

integer known as weight. Arcs run from places to transitions and vice versa. The

state of the system modeled by the net is represented by assigning non-negative

integers to places. This is known as a marking, and is shown graphically by adding

small black circles to the places, known as tokens. The dynamic behavior of the

system is simulated by changes in the markings of a Petri net, a process which is

carried out by the firing of the transitions. The basic concepts of Petri nets are

summarized as follows:

Definition 2.1 A Petri net [13,14] is a tuple N = (P, T, F ), where:

• P is a set of places.

• T is a set of transitions, such that P ∩ T = ∅ and P ∪ T 6= ∅.

• F is the flow relation that assigns weights to arcs: F : P × T ∪ T × P → N.

The marking M of a Petri net is defined over the set of places P . For each place

p ∈ P we let M(p) denote the number of tokens contained in p.

A marked Petri net Σ is a pair (N ,M) where N is a Petri net and M is a

marking. We denote by M0 the initial marking of the net.
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In the following, given a marking M and a set of places P , we denote by M |P
the restriction of M over P , i.e., M |P (p) = M(p) for all p ∈ P and M |P is undefined

otherwise.

Definition 2.2 [14] Given a Petri net N = (P, T, F ), we say that a marking M ′

covers a marking M if M ′ ≥ M , i.e., M ′(p) ≥ M(p) for each p ∈ P .

Given a Petri net N = (P, T, F ), we say that a place p ∈ P is an input (resp.

output) place of a transition t ∈ T iff there is an input (resp. output) arc from p to

t (resp. from t to p). Given a transition t ∈ T , we denote by •t and t• the set of

all input and output places of t, respectively. Analogously, given a place p ∈ P , we

denote •p and p• the set of all input and output transitions of p, respectively.

Definition 2.3 Let Σ = (N ,M) be a marked Petri net, with N = (P, T, F ). We

say that a transition t ∈ T is enabled in M , in symbols M
t

−→, iff for each input

place p ∈ P of t, we have M(p) ≥ F (p, t). A transition may only be fired if it is

enabled.

The firing of an enabled transition t in a marking M eliminates F (p, t) tokens

from each input place p ∈ •t and adds F (t, p′) tokens to each output place p′ ∈ t•,

producing a new marking M ′, in symbols M
t

−→ M ′.

We say that a marking Mn is reachable from an initial marking M0 if there exists

a firing sequence σ = t1t2 . . . tn such that M0
t1−→ M1

t2−→ . . .
tn−→ Mn. In this case,

we say that Mn is reachable from M0 through σ, in symbols M0
σ

−→ Mn. This

notion includes the empty sequence ε; we have M
ε

−→ M for any marking M . We

say that a firing sequence is initial if it starts from an initial marking.

The set of all possible markings which are reachable from an initial marking M0

in a marked Petri net Σ = (N ,M0) is denoted by R(N ,M0) (or simply by R(M0)

when N is clear from the context).

The following notion of subnet will be particularly relevant in the context of

slicing (roughly speaking, we will identify a slice with a subnet). Let P ′×T ′ ∪ T ′×
P ′ ⊆ P × T ∪ T × P , we say that a flow relation F ′ : P ′ × T ′ ∪ T ′ × P ′ → N is a

restriction of another flow relation F : P×T ∪ T×P → N over P ′ and T ′, in symbols

F |(P ′,T ′), if F ′ is defined as follows: F ′(x, y) = F (x, y) if (x, y) ∈ P ′ × T ′ ∪ T ′ ×P ′

and F ′ is not defined otherwise.

Definition 2.4 [8] A subnet N ′ = (P ′, T ′, F ′) of a Petri net N = (P, T, F ) is a

Petri net such that P ′ ⊆ P , T ′ ⊆ T and F ′ is a restriction of F over P ′ and T ′, i.e.,

F ′ = F |(P ′,T ′).

3 Dynamic Slicing of Petri Nets

In this section, we introduce our first approach to dynamic slicing of Petri nets.

We say that our slicing technique is dynamic since an initial marking is taken into

account (in contrast to previous approaches, e.g., [4,11,15,16]).

Using an initial marking can be useful, e.g., in debugging. Consider for instance

that the user is analyzing a particular trace for a marked Petri net (using a simula-

tion tool [7], which we assume correct), so that an erroneous state is reached. Here,
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by erroneous state, we mean a marking in which some places have an incorrect

number of tokens. In this case, we are interested in extracting the set of places and

transitions (more formally, a subnet) that may erroneously contribute tokens to the

places of interest, so that the user can more easily locate the bug.

Therefore, our first notion of slicing criterion is formalized as follows:

Definition 3.1 Let N = (P, T, F ) be a Petri net. A slicing criterion for N is a

pair 〈M0, Q〉 where M0 is an initial marking for N and Q ⊆ P is a set of places.

Roughly speaking, given a slicing criterion 〈M0, Q〉 for a Petri net N , we are

interested in extracting a subnet with those places and transitions of N which can

contribute to change the marking of Q in any execution starting in M0.

Our notion of dynamic slice is defined as follows. In the following, we say that

σ′ is a subsequence of a firing sequence σ w.r.t. a set of transitions T if σ′ contains

all transitions of σ that belong to T and in the same order.

Definition 3.2 Let N = (P, T, F ) be a Petri net and let 〈M0, Q〉 be a slicing

criterion for N . Given a Petri net N ′ = (P ′, T ′, F ′), we say that N ′ is a slice of N
w.r.t. 〈M0, Q〉 if the following conditions hold:

• the Petri net N ′ is a subnet of N and

• for each firing sequence σ = t1 . . . tn, for N , with M0
t1−→ . . .

tn−1

−→ Mn−1
tn−→ Mn

such that Mn−1(p) < Mn(p) for some p ∈ Q, there exists a firing sequence σ′ for

(N ′,M ′
0), with M ′

0 = M0|P ′ , such that

· σ′ is a subsequence of σ w.r.t. T ′,

· M ′
0

σ′

−→ M ′
m, m ≤ n, and

· M ′
m covers Mn|P ′ (i.e., M ′

m ≥ Mn|P ′).

Intuitively speaking, a Petri net N ′ is a slice of another Petri net N if N ′ is a

subnet of N (i.e., no additional places nor transitions are added) and the behaviour

of N is preserved in N ′ for the restricted sets of places and transitions. In order to

formalize this second condition, we require that, for all firing sequences σ = t1 . . . tn
that may move tokens to the places of the slicing criterion, i.e.,

M0
t1−→ . . .

tn−1

−→ Mn−1
tn−→ Mn and Mn−1(p) < Mn(p), p ∈ Q

the restriction of this firing sequence can also be performed on the slice N ′, i.e.,

M ′
0

σ′

−→ M ′
m and M ′

m ≥ Mn

Trivially, given a Petri net N , the complete net N is always a correct slice w.r.t.

any slicing criterion. The challenge then is to produce a slice as small as possible.

Algorithm 1 describes our method to extract a dynamic slice from a Petri net.

Intuitively speaking, Algorithm 1 constructs the slice of a Petri net (P, T, F ) for a

set of places Q ⊆ P as follows. The key idea is to capture a possible token flow

relevant for places in Q. For this purpose,

• we first compute the possible paths which lead to the slicing criterion,

• then we also compute the paths that may be followed by the tokens of the initial

marking.
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Algorithm 1 Dynamic slicing of a marked Petri net.

Let N = (P, T, F ) be a Petri net and let 〈M0, Q〉 be a slicing criterion for N .

First, we compute a backward slice similar to that of [15]. This is obtained from

b sliceN (Q, { }), where function b sliceN is defined as follows:

b sliceN (W,Wdone) =































{ } if W = { }

T ∪ •T ∪ b sliceN (W \W ′
done,W

′
done)

if W 6= { }, where T = •p, and W ′
done = Wdone ∪ {p}

for some p ∈ P

Now, we compute a forward slice from

f sliceN ({p ∈ P | M0(p) > 0}, { }, {t ∈ T | M0
t

−→})

where function f sliceN is defined as follows:

f sliceN (W,R, V ) =



















W ∪ R if V = { }

f sliceN (W ∪ V •, R ∪ V, V ′)

if V 6= { }, where V ′ = {t ∈ T \(R ∪ V ) | •t ⊆ W ∪ V •}

Then, the dynamic slice is finally obtained from the intersection of the backward

and forward slices. Formally, let

P ′ ∪ T ′ = b sliceN (Q, { }) ∩ f sliceN ({p ∈ P | M0(p) > 0}, { }, {t ∈ T | M0
t

−→})

with P ′ ⊆ P and T ′ ⊆ T , the computed slice is

N ′ = (P ′, T ′, F |(P ′,T ′))

This can be done by taking into account that (i) the marking of a place p depends on

its input and output transitions, (ii) a transition may only be fired if it is enabled,

and (iii) the enabling of a transition depends on the marking of its input places.

The algorithm is divided in three steps:

• The first step is a backward slicing method (which is similar to the basic slicing

algorithm of [15]) that obtains a slice N1 = (P1, T1, F1) defined as the subnet of

N that includes all input places of all transitions connected to any place p in P1,

starting with Q ⊆ P1.

· The core of this method is the auxiliary function b sliceN , which is initially

called with the set of places Q of the slicing criterion together with an empty

set of places.

· For a particular non-empty set of places W and a particular place p ∈ W ,

function b sliceN returns the transitions T in •p and the input places of these

transitions •T . Then, function b sliceN moves backwards adding the place p

to the set Wdone and removing from W the updated set Wdone until the set W

becomes empty.

• The second step is a forward slicing method that obtains a slice N2 = (P2, T2, F2)

defined as the subnet of N that includes all transitions initially enabled in M0 as
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well as those transitions connected as output transitions of places in P2, starting

with p ∈ P such that M0(p) > 0.

· We define an auxiliary function f sliceN , which is initially called with the places

that are marked at M0, an empty set of transitions and the enabled transitions

in M0.

· For a particular set of places W , a particular set of transitions R and a particular

non-empty set of transitions V , function f sliceN moves forwards adding the

places in V • to W , adding the transitions in V to R and replacing the set of

transitions V by a new set V ′ in which are included the transitions that are not

in R ∪ V and whose input places are in W ∪ V •.

· Finally, when V is empty, function f sliceN returns the accumulated set of places

and transitions W ∪ R.

• Finally, the third step obtains the slice N ′ = (P ′, T ′, F ′) defined as the subnet of

N where P ′ is the intersection of P1 and P2, T ′ is the intersection of T1 and T2,

and F ′ is the restriction of F over P ′ and T ′, i.e., the intersection of backward

and forward slices.

The following result states the completeness of our algorithm for computing

Petri net slices. The proof of this result follows easily by induction on the length of

the firing sequences considered in Definition 3.2.

Theorem 3.3 Let N be a Petri net and 〈M0, Q〉 be a slicing criterion for N . The

dynamic slice N ′ computed in Algorithm 1 is a correct slice according to Defini-

tion 3.2.

We will now show the usefulness of the technique with a simple example.

Example 3.4 Consider the Petri net N of Fig. 2(a) where the user wants to pro-

duce a slice w.r.t. the slicing criterion 〈M0, {p5, p7, p8}〉. Figure 2(b) shows the slice

N1 obtained in the first part of Algorithm 1. Figure 2(c) shows the slice N2 obtained

in the second part of Algorithm 1. The subnet shown in Fig. 2(d) is the final result

of Algorithm 1 (the intersection of N1 and N2). This slice contains all the places

and transitions of the original Petri net which can transmit tokens to the slicing

criterion.

Clearly, using an initial marking allows us to produce smaller slices. Surprisingly,

previous approaches completely ignored the marking of the net, and thus their slices

are often rather big. For instance, the slice of Fig. 2(b) is a subset of the slice

produced by Rakow’s algorithm [15] (this algorithm would also include transitions

t4, t6 and t7). Clearly, this slice contains parts of the Petri net that cannot be

reached with the given initial marking (e.g., transition t1 which could never be fired

because place p2 is empty). Rakow’s algorithm computes all the parts of the Petri

net which could transmit tokens to the slicing criterion and, thus, the associated

slicing criterion is just 〈Q〉, where Q ⊆ P is a set of places. In contrast, we compute

all the parts of the Petri net which could transmit tokens to the slicing criterion

from the initial marking. Therefore, our technique is essentially a generalization of

Rakow’s technique because the slice produced with Rakow’s algorithm w.r.t. 〈Q〉 is

the same as the slice produced w.r.t. 〈M0, Q〉 if M0(p) > 0 for all p ∈ P and all

t ∈ T are enabled transitions at M0.
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t0

p0 p1 t5 p3

t1

p2

t2

p4 t7 t4

t8t6

t3

p8

p6 p5

p9

p7

t9 t10

p10

(a) Initial PN (N , M0)

t0

p0 p1 t5 p3

t1

p2

t2

p4

t3

p8

p6 p5

p7

t9 t10

p10

(b) Slice (N1, M0|P1
)

t0

p0 p1 t5 p3

t2

p4 t7 t4

t8t6

t3

p8

p6 p5

p9

p7

t9 t10

p10

(c) Slice (N2, M0|P2
)

t0

p0 p1 t5 p3

t2

p4

t3

p8

p6 p5

p7

t9 t10

p10

(d) Slice result of Algorithm 1

Fig. 2. Example of an application of Algorithm 1

Our slicing technique is more general than Rakow’s technique but, at the same

time, it keeps its simplicity and efficiency because we still use the Petri net structure

to produce the slice. Therefore, our first approach can be considered lightweight

because its cost is bounded by the number of transitions T of the original Petri net;

namely, the cost of our algorithm is O(2T ).

4 Extracting Slices from Traces

In this section, we present an alternative approach to dynamic slicing that generally

produces smaller slices by also considering a particular firing sequence.

In principle, Algorithm 1 should consider all possible executions of the Petri net

starting from the initial marking. This approach can be useful in some contexts but

it is too imprecise for debugging when a particular simulation has been performed.

Therefore, in our second approach, we refine the notion of slicing criterion so as

to also include the firing sequence that represents the erroneous simulation. By

exploting this additional information, the new slicing algorithm will usually produce

smaller slices. Formally,

Definition 4.1 Let N = (P, T, F ) be a Petri net. A slicing criterion for N is a
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triple 〈M0, σ,Q〉 where M0 is a marking for N , σ is an initial firing sequence (i.e.,

starting from M0) and Q ⊆ P is a set of places.

Roughly speaking, given a slicing criterion 〈M0, σ,Q〉 for a Petri net, we are in-

terested in extracting a subnet with those places and transitions which are necessary

to move tokens to the places in Q.

Our notion of dynamic slice is defined as follows:

Definition 4.2 Let N = (P, T, F ) be a Petri net. Let 〈M0, σ,Q〉 be a slicing

criterion for N , with σ = t1t2 . . . tn. Given a Petri net N ′ = (P ′, T ′, F ′), we say

that N ′ is a slice of N w.r.t. 〈M0, σ,Q〉 if the following conditions hold:

• the Petri net N ′ is a subnet of N ,

• the set of places Q appears in P ′ (i.e., Q ⊆ P ′), and

• there exists a firing sequence σ′ for (N ′,M ′
0), with M ′

0 = M0|P ′ , such that

· σ′ is a subsequence of σ w.r.t. T ′,

· M ′
0

σ′

−→ M ′
m, m ≤ n, and

· M ′
m covers Mn|P ′ (i.e., M ′

m ≥ Mn|P ′).

Trivially, given a marked Petri net (N ,M0), the complete net N is always a

correct slice w.r.t. any slicing criterion. The challenge then is to produce a slice as

small as possible.

Algorithm 2 Extracting slices from traces.

Let N = (P, T, F ) be a Petri net and let 〈M0, σ,Q〉 be a slicing criterion for N ,

with σ = t1t2 . . . tn. Then, we compute a dynamic slice N ′ of N w.r.t. 〈M0, σ,Q〉
as follows:

• We have N ′ = (P ′, T ′, F ′), where M0
t1−→ M1

t2−→ . . .
tn−→ Mn, P ′ ∪ T ′ =

slice(Mn, σ,Q), P ′ ⊆ P , T ′ ⊆ T , and F ′ = F |(P ′,T ′). Auxiliary function slice is

defined as follows:

slice(Mi, σ,W ) =



















W if i = 0

slice(Mi−1, σ,W ) if ∀p ∈ W. Mi−1(p) ≥ Mi(p), i > 0

{ti} ∪ slice(Mi−1, σ,W ∪ •ti) if ∃p ∈ W. Mi−1(p) < Mi(p), i > 0

• The initial marking M ′
0 is the restriction of M0 over P ′, i.e., M ′

0 = M0|P ′ .

Intuitively speaking, given a slicing criterion 〈M0, σ,Q〉, the slicing algorithm

proceeds as follows:

• The core of the algorithm lies in the auxiliary function slice, which is initially

called with the marking Mn which is reachable from M0 through σ, together with

the firing sequence σ and the set of places Q of the slicing criterion.

• For a particular marking Mi, i > 0, a firing sequence σ and a set of places W ,

function slice just moves “backwards” when no place in W increased its tokens

by the considered firing.

• Otherwise, the fired transition ti increased the number of tokens of some place in
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W . In this case, function slice already returns this transition ti and, moreover, it

moves backwards also adding the places in •ti to the previous set W .

• Finally, when the initial marking is reached, function slice returns the accumulated

set of places (which includes the initial places in Q).

We will now show the utility of the technique with a simple example.

M0

t5
t0

t7 t0t2

M2 M3

t5 t7 t2

1 1 10 0 01 0M0

1 0 10 0 01 0M1

1 1 00 1 01 0M2

0 0 10 1 01 0M3

M5

1 1 00 0 01 0M6

1 1 00 0 10 0M7

0 0 00 2 01 0M8

1 0 00 1 01 0M11

1 0 00 0 01 0M12

1 0 00 0 10 0M13

1 1 00 0 01 0M14

0 0 00 1 01 0M15

1 1 00 0 01 1M16

1 0 00 0 01 0M20

1 0 00 0 01 0M21

1 0 00 0 10 0M22

1 1 00 0 00 0M26

0 0 00 1 01 1M27

0 0 10 0 00 0M28

1 0 00 0 01 0M29

1 0 00 0 00 0M31

1 0 00 0 01 0M32

0 0 00 0 10 0M33

0 0 00 0 01 1M34

1 1 00 0 00 0M35
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Fig. 3. Example of an application of Algorithm 2

Example 4.3 Consider the Petri net N of Example 3.4 shown in Fig. 2(a), together

with the firing sequence σ shown in Fig. 3(b). The firing sequence σ = t5t2t3t0t2t3
corresponds to the branch of the reachability graph shown in Fig. 3(a) that goes

from the root to the node M45. Then, the user can define the slicing criterion

〈M0, σ, {p5, p7, p8}〉 for N ; where M0 is the initial marking for N defined in Fig 2(a).

Clearly, this slicing criterion focus on a particular execution and thus the slice

produced is more precise than the one produced by Algorithm 1. In this case, the

slice of N w.r.t. 〈M0, σ, {p5, p7, p8}〉 is the Petri net shown in Fig. 3(c).

The following result states the completeness of our algorithm for computing

Petri net slices.
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Theorem 4.4 Let N = (P, T, F ) be a Petri net and let 〈M0, σ,Q〉 be a slicing

criterion for N . The dynamic slice N ′ computed in Algorithm 2 is a correct slice

according to Definition 4.2.

Proof. (Sketch) We prove the claim by induction on the number n of transitions

in σ.

If n = 0, then slice(M0, σ,Q) =
⋃

p∈Q slice(M0, σ, {p}) = Q and the claim follows

trivially for N ′ = (Q, {}, {}) and M ′
0 = M0|Q.

If n > 0, then we distinguish two cases:

• If Mn−1(p) ≥ Mn(p) for all p ∈ Q, then slice(Mn, σ,Q) = slice(Mn−1, σ,Q) and

the claim follows by induction.

• Otherwise, there exists some p ∈ Q with Mn−1(p) < Mn(p) and, there-

fore, slice(Mn, σ,Q) = {tn} ∪ slice(Mn−1, σ,Q ∪ •tn). Let N ′ = (P ′, T ′, F ′),

F ′ = F |(P ′,T ′), and M ′
0 = M0|P ′ . Now, we prove that N ′ is a slice of N w.r.t.

〈M0, σ,Q〉:
· Trivially, N ′ is a subnet of N , M ′

0 is a restriction of M0 and Q ⊆ P ′.

· Let N ′′ be the slice of N w.r.t. 〈M0, σn−1, Q∪•tn〉, with σn−1 = M0
t1−→ M1

t2−→
. . . Mn−1 and N ′′ = (P ′′, T ′′, F ′′).

By the inductive hypothesis, there exists a firing sequence σ′′ for (N ′′,M ′′
0 ),

with M ′′
0 = M0|P ′′ , such that

σ′′ is a subsequence of σn−1 w.r.t. T ′′,

M ′′
0

σ′′

−→ M ′′
k , k ≤ n − 1, and

M ′′
k covers Mn−1 (i.e., M ′′

k ≥ Mn−1).

Now, we consider a firing sequence σ′ for (N ′,M ′
0) that mimicks σ′′ (which is

safe since P ′′ = P ′ and T ′′ ⊆ T ′) and then adds one more firing depending

on whether tn ∈ T ′ or not. If σ′ = σ′′ then the claim follows by induction.

Otherwise, it follows trivially by the inductive hypothesis and the fact that M ′′
k

covers Mn.

2

5 Conclusions and Future Work

In this work, we have introduced two different techniques for dynamic slicing of

Petri nets. To the best of our knowledge, this is the first approach to dynamic

slicing for Petri nets. The first approach takes into account the Petri net and an

initial marking, but produces a slice w.r.t. any possibly firing sequence. The second

approach further reduces the computed slice by fixing a particular firing sequence.

In general, our slices are smaller than previous (static) approaches where no initial

marking nor firing sequence were considered.

As a future work, we plan to carry on an experimental evaluation of our slicing

techniques in order to test its viability in practice. We also find it useful to extend

our slicing technique to other kind of Petri nets (e.g., coloured Petri nets [10] and

marked-controlled reconfigurable nets [12]).
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