Under consideration for publication in Theory and Practice of Logic Programming 1

Concolic Testing in Logic Programming

FRED MESNARD, ETIENNE PAYET

LIM - université de la Réunion, France
(e-mail: {fred,epayet}Quniv-reunion.fr)

GERMAN VIDAL

MiST, DSIC, Universitat Politécnica de Valéncia
(e-mail: gvidal@dsic.upv.es)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Software testing is one of the most popular validation techniques in the software industry.
Surprisingly, we can only find a few approaches to testing in the context of logic program-
ming. In this paper, we introduce a systematic approach for dynamic testing that combines
both concrete and symbolic execution. Our approach is fully automatic and guarantees
full path coverage when it terminates. We prove some basic properties of our technique
and illustrate its practical usefulness through a prototype implementation.

KEYWORDS: Symbolic execution, logic programming, testing.

1 Introduction

Essentially, software validation aims at ensuring that the developed software com-
plies with the original requirements. One of the most popular validation approaches
is software testing, a process that involves producing a test suite and then execut-
ing the system with these test cases. The main drawback of this approach is that
designing a test suite with a high code coverage —i.e., covering as many execution
paths as possible— is a complex and time-consuming task. As an alternative, one
can use a tool for the random generation of test cases, but then we are often faced
with a poor code coverage; there are though some hybrid approaches where random
generation is driven by the user, as in QuickCheck (Claessen and Hughes 2000),
but then again the process may become complex and time-consuming.

Another popular, fully automatic approach to test case generation is based on
symbolic execution (King 1976; Clarke 1976). Basically, symbolic execution consid-
ers unknown (symbolic) values for the input parameters, and then explores non-
deterministically all feasible execution paths. Symbolic states include now a path
condition that stores the current constraints on symbolic values, i.e., the conditions
that must hold to reach a particular execution point. Then, for each final state, a
test case is produced by solving the constraints in the associated path condition.

A drawback of the previous approach, though, is that the constraints in the path
condition may become very complex. When these constraints are not solvable, the
only sound way to proceed is to stop the execution path, often giving rise to a poor

2 F. Mesnard and E. Payet and G. Vidal

coverage. Recently, a new variant called concolic ezecution (Godefroid et al. 2005;
Sen et al. 2005) that combines both concrete and symbolic execution has been
proposed as a basis for both model checking and test case generation. The main
advantage is that, now, when the constraints in the symbolic execution become too
complex, one can still take some values from the concrete execution to simplify
them. This is sound and often allows one to explore a larger execution space. Some
successful tools that are based on concolic execution are, e.g., SAGE (Godefroid
et al. 2012) and Java Pathfinder (Pasareanu and Rungta 2010).

In the context of the logic programming paradigm, one can find a flurry of static,
complete techniques for software analysis and verification. However, only a few
dynamic, sound techniques for program validation have been proposed. Dynamic,
typically incomplete, techniques have proven very useful for software validation
in other paradigms. Therefore, we expect concolic execution to be also useful for
testing logic programs.

In this paper, we introduce a new, fully automatic scheme for concolic testing
in logic programming. As in other paradigms, concolic testing may help the pro-
grammer to systematically find program bugs and generate test cases with a good
code coverage. As it is common, our approach is always sound but usually incom-
plete. In the context of logic programming, we consider that “full path coverage”
involves calling each predicate in all possible ways. Consider, e.g., the logic pro-
gram P = {p(a)., p(b).}. Here, one could assume that the execution of the goals
in {p(a), p(b)} is enough for achieving a full path coverage. However, in this paper
we consider that full path coverage requires, e.g., the set {p(X),p(a),p(b),p(c)} so
that we have a goal that matches both clauses, one that only matches the first
clause, one that only matches the second clause, and one that matches no clause.
We call this notion choice coverage, and it is specific of logic programming. To the
best of our knowledge, such a notion of coverage has not been considered before.
Typically, only a form of statement coverage has been considered, where only the
clauses used in the considered executions are taken into account. For guaranteeing
choice coverage, a new type of unification problems must be solved: we have to
produce goals in which the selected atom A matches the heads of some clauses, say
Hy,...,H,, but does not match the heads of some other clauses, say Hy,..., H.,.
We provide a constructive algorithm for solving such unifiability problems.

A prototype implementation of the concolic testing scheme for pure Prolog, called
contest, is publicly available from http://kaz.dsic.upv.es/contest.html. The
results from an experimental evaluation point out the usefulness of the approach.
Besides logic programming and Prolog, our technique might also be useful for other
programming languages since there exist several transformational approaches that
“compile in” programs to Prolog, like, e.g., (Gémez-Zamalloa et al. 2010).

2 Concrete Semantics

The semantics of a logic program is usually given in terms of the SLD relation on
goals (Lloyd 1987). In this section, we present instead a local semantics which is
similar to that of Stroder et al. (2011). Basically, this semantics deals with states
that contain all the necessary information to perform the next step (in contrast to
the usual semantics, where the SLD tree built so far is also needed, e.g., for dealing

Concolic Testing in Logic Programming 3

(success)

(trues | S) — (successs)

(backtrack) S#e

(failure) ((fail, B)s| S) — (S)

((fail, B)s) — (Fars)
clauses(A,P) = (c1,...,en) An >0
((A,B)s|S) — ((A,B)g|...| (A, B)§" | .S)
mgu(A,Hi) =0
(A, B);" 7P| S) — ((Bio, Bo)so |)

clauses(A,P) = {}

(choice) ((A,B)s|S) — (fails| S)

(choice_fail)

(unfold)

Fig. 1. Concrete semantics

with the cut). In contrast to (Stréder et al. 2011), for simplicity, in this paper we
only consider definite logic programs. However, the main difference w.r.t. (Stroder
et al. 2011) comes from the fact that our concrete semantics only considers the
computation of the first solution for the initial goal. This is the way most Prolog
applications are used and, thus, our semantics should consider this behaviour in
order to measure the coverage in a realistic way.

Before presenting the transition rules of the concrete semantics, let us introduce
some auxiliary notions and notations. We refer the reader to (Apt 1997) for the
standard definitions and notations for logic programs. The semantics is defined by
means of a transition system on states of the form (Bj |...| B), where Bj |...|B}
is a sequence of goals labeled with substitutions (the answer computed so far, when
restricted to the variables of the initial goal). We denote sequences with S, S5’;.. .,
where € denotes the empty sequence. In some cases, we label a goal B both with a
substitution and a program clause, e.g., Bf B which is used to determine the next
clause to be used for an SLD resolution step (see rules choice and unfold in Fig. 1).
Note that the clauses of the program are not included in the state but considered
a global parameter since they are static. In the following, given an atom A rooted
by a defined predicate and a logic program P, clauses(A, P) returns the sequence
of renamed apart program clauses ci,...,c, from P whose head unifies with A.

For simplicity, w.l.o.g., we only consider atomic initial goals. Therefore, given
an atom A, an initial state has the form (A;;), where id denotes the identity
substitution. The transition rules, shown in Figure 1, proceed as follows:

e In rules success and failure, we use fresh constants to denote a final state:
(succrsss) denotes that a sucessful derivation ended with computed answer
substitution §, while (ras) denotes a finitely failing derivation; recording &
for failing computations might be useful for debugging purposes.

e Rule backtrack applies when the first goal in the sequence finitely fails, but
there is at least one alternative choice.

e Rule choice represents the first step of an SLD resolution step. If there is at
least one clause whose head unifies with the leftmost atom, this rule introduces
as many copies of a goal as clauses returned by function clauses. If there is
at least one matching clause, unfolding is then performed by rule unfold.
Otherwise, if there is no matching clause, rule choice_fail returns fail so that
either rule failure or backtrack applies next.

4 F. Mesnard and E. Payet and G. Vidal

Ezxample 1
Consider the following logic program:

p(s(a)). q(a). r(a).
p(s(X)) < q(X). q®). r(c).
p(f(X)) = r(X).

Given the initial goal p(f(X)), we have the following successful computation (for
clarity, we label each step with the applied rule):

(P(f(X))ia) = (p(FX)) VTt ())
— T . T . — truesrx/qv |7 .
o QO (XY = (e e [r(05)
—SUCCESS (SUCCESS [X /a})

Therefore, we have a successful computation for p(f(X)) with computed answer
{X/a}. Observe that only the first answer is considered.

We do not formally prove the correctness of the concrete semantics, but it is an
easy consequence of the correctness of the semantics in (Stroder et al. 2011). Note
that our rules can be seen as an instance for pure Prolog without negation, where
only the computation of the first answer for the initial goal is considered.

3 Concolic Execution Semantics

In this section, we introduce a concolic execution semantics for logic programs that
is a conservative extension of the concrete semantics of the previous section. In this
semantics, concolic states have the form (S | S’), where S and S’ are sequences of
(possibly labeled) concrete and symbolic goals, respectively. In logic programming,
the notion of symbolic execution is very natural: the structure of both S and S’ is
the same, and the only difference is that some atoms might be less instantiated in
S’ than in S.

In the following, we let 0,, denote the sequence of syntactic objects o1,..., 0y,
and Var(o) denotes the set of variables in the syntactic object o. Moreover, given
an atom A, we let root(4) = p/n if A = p(t,). Now, given an atom A with
root(A) = p/n, an initial concolic state has the form (A;q | p(X,,)ia), where X,
are different fresh variables. In the following, we assume that every clause ¢ has a
corresponding unique label, which we denote by £(¢). By abuse of notation, we also
denote by £(c;,) the set of labels {{(c1),...,4(cn)}.

The semantics is given by the rules of the labeled transition relation ~» shown in
Figure 2. Here, we consider two kinds of labels for the transition relation:

e The empty label, o, which is often implicit.

e A label of the form c(£(¢,), £(dy)), which represents a choice step. Here, £(¢,,)
are the labels of the clauses matching the selected atom in the concrete goal,
while ¢(dy) are the labels of the clauses matching the selected atom in the
corresponding symbolic goal. Note that £(,) C £(d}) since the concrete goal
is always an instance of the symbolic goal (see Theorem 1 below).

For each transition step C1 ~>.(£,,r,) C2, the first set of labels, £y, is used to
determine the execution trace of a concrete goal (see below). Traces are needed to

Concolic Testing in Logic Programming 5

(success)

(trues | S | trueg | S”) ~»o (success; || succEssg)

(failure) {(fail, B)s || (fail, B')g) ~» (FaILs | FAILg)

S#e
(backtrack) T By, 1S T (fan,;)o 15~ (STS7)
clauses(A, P) = ¢, An > 0 Aclauses(A’, P) = di,
<(A7 B)s|S][(A’,B’)9|S’> e(e(En) L(dy)) <(A B) ! | |(A78)¢csn |S
[(A, B)g ... [(A", B)g" |S")
clauses(A4,P) = {} A clauses(A’, P) = ¢
(A, B)s [ST (A", B")6|S") ~ ey ey (fails |5] faile | S7)

mgu(A, H1) = o Amgu(A’, Hy) = o’
(A, B)5 B[S T (A, B 51]S) ~o ((B10,B)so | S | (Bio”, B'o’)gqr | S')

(choice)

(choice_fail)

(unfold)

Fig. 2. Concolic execution semantics

keep track of the execution paths already explored. The second set of labels, Lo, is
used to compute new goals that follow alternative paths not yet explored, if any.

In the concolic execution semantics, we perform both concrete and symbolic ex-
ecution steps in parallel. However, the symbolic execution does not explore all pos-
sible execution paths but only mimics the steps of the concrete execution; observe,
e.g., rule choice in Figure 2, where the clauses labeling the copies of the symbolic
goal are the same clauses ¢, matching the concrete goal, rather than the set of
clauses dj, (typically a superset of).

FEzxzample 2

Consider again the logic program of Example 1, now with clause labels:
(41) p(s(a)). (ls) q(a). (ls) r(a).
(b2) p(s(X)) —q(X). (€5) q(b). (¢7) 7(c).
(l3) p(f (X)) « r(X).

Given the initial goal p(f(X)), we have the following concolic execution:

(p(f(X))ia [P(N)ia) C'Z%;c

Y))—r(Y Y))—r(Y
p(f(X)) p(f(Y)) ()][p(N)p(f()) ()>

(f id

r(X)ia [(V) {nyov)p)

r(X) (X)) [r(Y)EN/f(Y)}| r(Y >ES\C’)/f V)
truegx/ay | (X)) T trueqny payy |7(Y){SV)/f(Y)}>
(success{x/a} | SUCCESS{N/f(a)})

where [:1 = {53}, Ell = {61,62,63}, and £2 = [:/2 = {66767}.

(/([,2,[,'

unfold
o

~uySuccess
<>

laSed

(
(
ch0|ce <
(

We note that, in principle, we only consider finite concolic executions. This is a
reasonable assumption since one can expect concrete goals to compute the first
answer finitely (unless the program is erroneous). We associate a trace to each
concolic execution as follows:

6 F. Mesnard and E. Payet and G. Vidal

Definition 1 (trace)
Let P be a program and Cp an initial concolic state. Let E = (Cy ~, ...~ Cm),

m > 0, be a concolic execution for Cy in P. Let ¢(£L1,L)),...,e(Ly, L)), k < m,
be the sequence of labels in Iy,...,l, which are different from ¢. Then, the trace
associated to the concolic execution F is trace(E) = Ly, ..., L.

Roughly speaking, a trace is just a sequence with the sets of labels of the match-
ing clauses in each choice step. For instance, the trace associated to the concolic
execution of Example 2 is ({¢3}, {¢s, ¢7}), i.e., we have two unfolding steps with
matching clauses {3} and {{, ¢}, respectively. Note that traces ending with { }
represent failing derivations.

The following result states an essential invariant for concolic execution:

Theorem 1

Let P be a program and Cy = (p(%,)ia | p(Xn)ia) be an initial concolic state. Let
Co~> ...~ Cp, m 2 0, be a finite (possibly incomplete) concolic execution for Cy
in P. Then, for all concolic states C; = (BS|S [DS |S"), i = 0,...,m, the following
invariant holds: |S| = |S’|, D < B, ¢ = ¢ (if any), and p(X,,)8 < p(%,)é6.

4 Concolic Testing

In this section, we introduce a concolic testing procedure for logic programs based
on the concolic execution semantics of the previous section.

4.1 The Procedure

As we have seen in Section 3, the concolic execution steps labeled with ¢(Lq, £2)
give us a hint of (potential) alternative execution paths. Consider, for instance, the
concolic execution of Example 2. The first step is labeled with c¢({¢3}, {{1, {2, {3}).
This means that the selected atom in the concrete goal only matched clause £3, while
the selected atom in the symbolic goal matched clauses £, {5 and ¢3. In principle,
there are as many alternative execution paths as elements in P ({1, £2,¢3}) \ {¢3};
e.g., { } denotes an execution path where the selected atom matches no clause, {1 }
another path in which the selected atom only matches clause ¢1, {¢1, {2, {3} another
path where the selected atom matches all three clauses ¢1, £ and /3, and so forth.
As mentioned before, when aiming at full choice coverage we need to solve both
unification and disunification problems. Consider, e.g., that A is the selected atom
in a goal, and that we want it to unify with the head of clause ¢; but not with the
heads of clauses /5 and /3. For this purpose, we introduce the following auxiliary
function alt, which also includes some groundness requirements (see below). In the
following, we let &~ denote the unifiability relation, i.e., given atoms A, B, A ~ B
holds if mgu(A, B) # fail; correspondingly, —(A ~ B) holds if mgu(A, B) = fail.

Definition 2 (alt)
Let A be an atom and £, L’ be sets of clause labels. Let V be a set of variables.
The function alt(A4, £, L', V) returns a substitution # such that the following holds:

A0~ HyN...NAO~ H, AN—(A0 = Hp 1) A ...A—=(A0 = H,,) AVO are ground

Concolic Testing in Logic Programming 7

where Hi, ..., H, are the heads of the clauses labeled by £ and H,,1,..., H,, are
the heads of the clauses labeled by L'\ L, respectively. If such a substitution does
not exist, then function alt returns fail.

We postpone to the next section the definition of a constructive algorithm for
function alt. Now, we present an algorithm to systematically produce concrete initial
goals so that all feasible choices in the execution paths are covered (unless the
process runs forever). First, we introduce the following auxiliary definitions:

Definition 3 (conc, symb)
Let C = (Bj, |...|BS 1 Dg, |...|Dy.) bea concolic state. Then, we let conc(C) = By,
denote the (first) concrete goal and symb(C) = Dy, the (first) symbolic goal.

Definition 4 (alt_trace)

Let P be a program, Cy an initial concolic state, and E = (Cyp ~», ... ~y,
Cn ~c(z,z7) Cny1) be a (possibly incomplete) concolic execution for Co in P. Then,
the function alt_trace denotes the following set of (potentially) alternative traces:

alttrace(E) = {Ly,..., Lk, L7 | trace(Co~yy -..~p, Cp) = L1, ..., Lk
and L” € (P(L)\ L) }

For instance, given the following (partial) concolic execution E (from Example 2):

(PUF(X))ia [p(N)ia) ~eoe) (£ p(nypf D=)
~ognfeld (X)ia L (Y) vy g v)y)

~ochgee (X0 [TS e PO T)

where Lo = L}, = {{g, ¢}, we have alt_trace(E) = {(L1,{ }), (L1,{ls}), (L1, {l7})}.
Now, we introduce our concolic testing procedure. It takes as input a program and
a random —e.g., provided by the user— initial atomic goal to a distinguished pred-
icate main/n. In the following, we assume that each concrete initial goal main(t,)
is existentially terminating w.r.t. Prolog’s leftmost computation rule, i.e., either
computes the first answer in a finite number of steps or finitely fails (Vasak and
Potter 1986). For this purpose, we assume that main/n has some associated in-
put arguments, determined by a function input, so that an initial goal main(t,)
existentially terminates if the terms input(main(t,)) are ground. One could also
consider that there are several combinations of input arguments that guarantee
existential termination —this is similar to the modes of a predicate— but we only
consider one set of input arguments for simplicity (extending the concolic testing
algorithm would be straightforward). As mentioned before, assuming that concrete
initial goals are existentially terminating is a reasonable assumption in practice.

Definition 5 (concolic testing)
Input: a logic program P and an atom main(t,) with input(main(t,)) ground.
Output: a set T'C' of test cases.

1. Let Pending := {main(t,)}, TC :={}, Traces := {}.

2. While |Pending| # 0 do

(a) Take A € Pending, Pending := Pending\{A}, TC :=TC U {A}.

8 F. Mesnard and E. Payet and G. Vidal

(b) Let Co = (Aiq | main(X,,)iqa) and compute a successful or finitely
failing derivation E = (Cy ~; ... ~1,, Cm).

(c) Let Traces := Traces U trace(E).

(d) For each prefix Co ~+y, ... ~; Cj ~oee)y Cjy1 of E and for
each (possibly partial) trace Ly, L1 € alt_trace(Co ~1, ... ~;

Cj ~e(z,cry Cj41) which is not the prefix of any trace in Traces,

add main(X,)00" to Pending, where symb(C;) = (A1,B)s and

alt(Az, Lx+1, £, Var(input(main(X,)0))) = 0" # fail.
3. Return the set T'C of test cases

The soundness of concolic testing is immediate, since every error spotted in the
concrete executions (e.g., a non-terminating call or a call with an incorrect number
of arguments) is obviously a real bug. Completeness and termination are more
subtle properties though.

In principle, one could argue that the concolic testing algorithm is partially cor-
rect in the sense that, if the algorithm terminates, the generated test cases cover all
feasible paths. Our assumptions trivially guarantee that every considered concrete
execution is finite (i.e., step 2.b in the loop of the concolic testing algorithm). Un-
fortunately, the algorithm will often run forever by producing infinitely many test
cases. Consider, e.g., the following simple program:

(41) nat(0). (£2) nat(s(X)) — nat(X).

Even if every goal nat(t) with ¢ ground is terminating, our algorithm will still
produce infinitely many test cases, e.g., nat(0), nat(s(0)), nat(s(s(0))), ..., since
each goal will explore a different path (i.e., will produce a different execution trace:
({61}), ({€2},{1}), ({€2},{l2},{l1}),-..). In practice, though, the quality of the
generated test cases should be experimentally evaluated using a coverage tool.

Therefore, in general, we will sacrifice completeness in order to guarantee the
termination of concolic testing. For this purpose, one can fix a maximum term
depth for the arguments of the generated test cases. As it is common, the depth
depth(t) of a term t is defined as follows: depth(t) = 0 if ¢ is a variable or a constant
symbol, and depth(f(t1,...,tn)) = 1 + max(depth(t1),..., depth(t,)), otherwise.
Then, we can replace the use of function alt in step 2.d of Definition 5 by a function
alt such that alty (A, £, L', G) = alt(A, L, L', G) = 0 if depth(t) < k for all X/t € 6,
and alti (A, £, L', G) = fail otherwise.

For instance, by requiring a maximum term depth of 1, the generated test cases
for the program nat above would be nat(0), nat(1), nat(s(0)) and nat(s(1)), where
1 is a fresh constant symbol, with associated traces ({¢1}), ({ }), ({¢2},{¢1}), and
({£2},{}), respectively. This is the solution we implemented in the concolic testing
tool described in Section 4.3.

4.2 Solving Unifiability Problems

In this section, we present a constructive algorithm for function alt. We first define
our unifiability problems and then we propose an algorithmic solution in two steps.

Concolic Testing in Logic Programming 9

Definition 6 (unifiability problem)

Let A be an atom and Hpes, Hpeg be two sets of atoms, the elements of which are
variable disjoint with A and unify with A, and a set of variables G. The problem
consists in finding a substitution o such that Ac ~ H* for each HT € Hpos,
—(Ao ~ H™) for each H~ € Hpey, and Go is ground.

4.2.1 The Positive Atoms

First, we try to find a substitution o such that Ac ~ H" for each H" € H,5. Note
that o := id works, but we may find a more precise substitution with the following
algorithm, which will become useful when dealing with the negative atoms. We use
a special set U of variables, the elements of which will replace disagreement pairs
(see (Apt 1997) p. 27). The elements of U are denoted by U, U’, U;... Roughly
speaking, given terms s and t, a subterm s’ of s and a subterm # of ¢ form a
disagreement pair if the root symbols of s’ and ¢’ are different, but the symbols
from s’ up to the root of s and from ¢’ up to the root of ¢ are the same. For
instance, X, g(a) and b, h(Y') are disagreement pairs of the terms f(X,g(b)) and
f(g(a),g(h(Y))). A disagreement pair t,t’ is called simple if one of the terms is a
variable that does not occur in the other term and no variable of I/ occurs in t,t'.
We say that the substitution {X/s} is determined by ¢,¢ if {X, s} = {¢,t'}.

Basically, given a set of atoms A, the following algorithm computes an atom B
such that B# still unifies with all the atoms in A as long as 6 does not bind variables
from U.

Definition 7 (Pos)
Input: a non-empty set A of atoms with the same predicate symbol.
Output: an atom B.

1. Let B:= A.
2. While simple disagreement pairs occur in B do

(a) nondeterministically choose a simple disagreement pair ¢,¢" in B;
(b) set B to By where 7 is a substitution determined by ¢,¢'.

3. While |B] # 1 do

(a) nondeterministically choose a disagreement pair ¢,¢' in B;
(b) replace t,t' in B by a fresh variable of U.

4. Return B in B.

The correctness of this algorithm is stated as follows. In the following, for any
atom B and substitution 7, we let n|B denote the substitution obtained from n by
restricting its domain to Var(B).

Theorem 2

Let A be a non-empty set of atoms with the same predicate symbol. The algorithm
in Definition 7 with input A always terminates and returns an atom B such that
Bn unifies with all the atoms of A for any substitution n with Dom(n|B)NU = {}
and Ran(n|B) = {}.

10 F. Mesnard and E. Payet and G. Vidal

Ezxample 3

Let A := {p(a, X),p(b,Y),p(Z, Z)}. First the algorithm sets B := A, then it con-
siders the simple disagreement pairs in B. The substitution n; = {Y/X} is de-
termined by X,Y. Action (2b) sets B to By = {p(a, X),p(b, X),p(Z,Z)}. The
substitution 1y := {Z/X} is determined by X, Z. Action (2b) sets B to Bny =
{p(a,X),p(b, X),p(X, X)}. The substitution n3 := {X/a} is determined by a, X.
Action (2b) sets B to Bns = {p(a,a),p(b,a)}. Now, no simple disagreement pair
occurs in B, hence the algorithm jumps to the loop at line 3. Action (3b) replaces
the disagreement pair a,b with a fresh variable U € U, hence B is set to {p(U,a)}.
As |B| =1 the loop at line 3 stops and the algorithm returns p(U, a).

4.2.2 The Negative Atoms

Now we deal with the negative atoms by means of the following algorithm which is
the basis of our implementation of function alt:

Definition 8 (PosNeg)

Input: an atom A and two sets of atoms Hpos, Hneg, the elements of which are
variable disjoint with A and unify with A, and a set of variables G.

Output: fail or a substitution o.

1. Let B be the atom returned by the algorithm of Definition 7 with input
Hpos U {A’} where A’ is a copy of A with fresh variables.

Let 6 := mgu(A, B).

Let n be a substitution such that G0n is ground.

Let o := 6n.

Check that Dom(o|B) NU = {} and Ran(o|B) = {} otherwise return fail.
Check that for each H~ € Hyeq, 7(Ao =~ H™), otherwise return fail.
Return o|A.

NSO N

The correctness of this algorithm is stated as follows:

Theorem 3

Given an atom A and two sets of atoms Hp,s, Hneq, the elements of which are
variable disjoint with A and unify with A, and a set of variables G, the algorithm in
Definition 8 terminates. Moreover, if it returns a substitution o then A Hen,,, A0~
H A Nyen,,, (Ao = H') holds and Go is ground.

Example 4

Let A := p(X), Hpos := {p(s(Y))}, Hneg := {p(s(0))}, and G := {X}. The algo-
rithm of Section 4.2.1 applied to Hpes U{p(X’)} returns B := p(s(Y)). We have 6 =
{X/s(Y)} and GO = {s(Y)}. We take n = {Y/s(0)}, then n = {X/s(s(0)),Y/s(0)},
On|B = {Y/s(0)}, and Ran(0n|B) = {}. Let 0 = {X/s(s(0)), Y/s(0)}, Dom(c|B) =
{Y'} does not intersect with ¢. Finally, we check that p(s(s(0))) does not unify with
p(s(0)). The algorithm returns {X/s(s(0))}.

Concolic Testing in Logic Programming 11

Table 1. Clause coverage analysis results (SICStus Prolog)

paper 100% | paper2 100% | nat 100% | advisor 91% | applast 100%
depth 88% | regexp 86% | relative 100% | rotateprune 100% | transpose 100%
mult 100% | hanoi 100% | automaton 100% | gsort 80% | inclist 100%

double flip 100% | recacctype 100% | ackermann 100% | fibonacci 100% | preorder 100%

Example 5

Let A := p(X), Hpos := {p(a),p(b)}, Hneg := {p(f(Z))}, and G := {}. The algo-
rithm of Section 4.2.1 applied to Hp,s U {p(X’)} returns B := p(U). However, we
cannot find o such that Bo does not unify with p(f(Z)) without binding U to a
non-variable term. The algorithm thus returns fail.

4.3 A Tool for Concolic Testing

In this section, we present a prototype implementation of the concolic testing
scheme. The tool, called contest, is publicly available from the following URL

http://kaz.dsic.upv.es/contest.html

It consists of approx. 1000 lines of Prolog code and implements the concolic testing
algorithm of Definition 5 with function alt as described in Section 4.2 and a maxi-
mum term depth that can be fixed by the user in order to guarantee the termination
of the process. For instance, for the program of Example 2, with initial goal p(s(a)),
and assuming its argument is an input argument, i.e., input(p(s(a))) = s(a), and a
maximum term depth of 2, we get the following test cases: p(s(a)), p(c), p(s(c)),
p(s(b)), p(f(c)), p(f(b)), and p(f(a)), thus achieving full choice coverage.

Table 1 shows a summary of the coverage achieved by the test cases automatically
generated using contest. The complete benchmarks —including the source code, ini-
tial goal, input arguments, maximum term depth, and a timeout— can be found in
the above URL. We used the coverage analysis tool of SICStus Prolog 4.3.1, which
basically measures the number of times each clause is used. The results are very
satisfactory, achieving a full coverage in most of the examples.

The current version is a proof-of-concept implementation and only deals with
pure Prolog without negation. We plan to extend it to cope with full Prolog. The
concrete semantics can be extended following (Stréder et al. 2011), and concolic
execution is in general a natural extension of the semantics in Figure 2. Dealing
with negation or the cut is simple since one just follows the rules of the concrete
semantics. In other cases, e.g., for relational built-in’s or equalities, we should label
the execution step with an associated constraint, which can then be used to produce
alternative execution paths by solving its negation. In this context, our tool will be
useful not only for test case generation, but also to detect program errors during
concolic testing (e.g., negated atoms which are not instantiated enough, incorrect
calls to arithmetic built-in’s, etc). See Appendix A for more details on extending
concolic execution to full Prolog.

12 F. Mesnard and E. Payet and G. Vidal

5 Related Work and Concluding Remarks

Mera et al. (2009) present a framework unifying unit testing and run-time verifi-
cation for the Ciao system (Hermenegildo et al. 2012). The ECLiPSe constraint
programming system (Schimpf and Shen 2012) and SICStus Prolog (Carlsson and
Mildner 2012) both provide tools which run a given goal and compute how often
program points in the code were executed. SWI-Prolog (Wielemaker et al. 2012)
offers a unit testing tool associated to an optional interactive generation of test
cases. It also includes an experimental coverage analysis which runs a given goal
and computes the percentage of the used clauses and failing clauses. Belli and Jack
(1993) and Degrave et al. (2008) consider automatic generation of test inputs for
strongly typed and moded logic programming languages like the Mercury program-
ming language (Somogyi et al. 1996), whereas we only require moding the top-level
predicate of the program.

One of the closest approaches to our work is the test case generation technique by
(Albert et al. 2014). The main difference, though, is that their technique is based
solely on traditional symbolic execution. As mentioned before, concolic testing may
scale better since one can deal with more complex constraints by using data from
the concrete component of the concolic state. Another difference is that we aim at
full path coverage (i.e., choice coverage), and not only a form of statement coverage.

Another close approach is (Vidal 2015), where a concolic execution semantics
for logic programs is presented. However, this approach only considers a simpler
statement coverage and, thus, it can be seen as a particular instance of the technique
in the present paper. Another significant difference is that, in (Vidal 2015), concolic
execution proceeds in a stepwise manner: first, concrete execution produces an
execution trace, which is then used to drive concolic execution. Although this scheme
is conceptually simpler, it may give rise to poorer results in practice since one cannot
use concrete values in symbolic executions, one of the main advantages of concolic
execution over traditional symbolic execution. Moreover, Vidal (2015) presents no
formal results nor an implementation of the concolic execution technique.

Summarizing the paper, we have introduced a novel scheme for concolic testing
in logic programming. It offers a sound and fully automatic technique for detecting
run time errors (without false positives) and test case generation with a good code
coverage. We have proved a number of properties for concolic testing, including
the particular type of unification problems that should be solved to produce new
test cases. Furthermore, we have developed a publicly available proof-of-concept
implementation of the concolic testing scheme, contest, that shows the usefulness of
our approach. To the best of our knowledge, this is the first fully automatic testing
tool for Prolog that aims at full path coverage (here called choice coverage).

As future work, we plan to extend the scheme to full Prolog (see the remarks
in Section 4.3). Another interesting subject for further research is the definition of
appropriate heuristics to drive concolic testing w.r.t. a given coverage criterion. This
might have a significant impact on the quality of the test cases when the process is
incomplete. Finally, from the experimental evaluation, we observed that the results
could be improved by introducing type information, so that the generated values
are restricted to the right type. Improving concolic testing with type annotations
is also a promising line of future work.

Concolic Testing in Logic Programming 13

References

ALBERT, E., ARENAS, P., GOMEZ-ZAMALLOA, M., AND R0JAS, J. 2014. Test Case Gener-
ation by Symbolic Execution: Basic Concepts, a CLP-Based Instance, and Actor-Based
Concurrency. In SFM 201/. Springer LNCS 8483, 263-309.

Art, K. 1997. From Logic Programming to Prolog. Prentice Hall.

BELLI, F. AND JACK, O. 1993. Implementation-based analysis and testing of Prolog
programs. In ISSTA. 70-80.

CARLSSON, M. AND MILDNER, P. 2012. SICStus Prolog - the first 25 years. Theory and
Practice of Logic Programming 12, 1-2, 35—66.

CLAESSEN, K. AND HUGHES, J. 2000. QuickCheck: a lightweight tool for random testing
of Haskell programs. In Proc. of (ICFP 2000). ACM, 268-279.

CLARKE, L. 1976. A program testing system. In Proceedings of the 1976 Annual Confer-
ence (ACM’76). 488-491.

DEGRAVE, F., SCHRIJVERS, T., AND VANHOOF, W. 2008. Automatic generation of test
inputs for Mercury. In Logic-Based Program Synthesis and Transformation, 18th Inter-
national Symposium, LOPSTR 2008. 71-86.

GODEFROID, P., KLARLUND, N., AND SEN, K. 2005. DART: directed automated random
testing. In Proc. of PLDI’05. ACM, 213-223.

GODEFROID, P., LEVIN, M., AND MOLNAR, D. 2012. Sage: whitebox fuzzing for security
testing. Commun. ACM 55, 3, 40-44.

GOMEZ-ZAMALLOA, M., ALBERT, E., AND PUEBLA, G. 2010. Test case generation for
object-oriented imperative languages in CLP. TPLP 10, 4-6, 659-674.

HERMENEGILDO, M. V., BUgENO, F., CARRO, M., LOPEzZ-GARcia, P., MERA, E.,
MORALES, J. F., AND PUEBLA, G. 2012. An overview of Ciao and its design philosophy.
TPLP 12, 1-2, 219-252.

King, J. C. 1976. Symbolic execution and program testing. Commun. ACM 19, 7,
385-394.

Lrovyp, J. 1987. Foundations of Logic Programming. Springer-Verlag, Berlin. Second
edition.

MERA, E., LOPEZ-GARCIA, P., AND HERMENEGILDO, M. V. 2009. Integrating software
testing and run-time checking in an assertion verification framework. In 25th Interna-
tional Conference on Logic Programming, ICLP 2009, Pasadena. 281-295.

PASAREANU, C. AND RUNGTA, N. 2010. Symbolic PathFinder: symbolic execution of Java
bytecode. In ASE, C. Pecheur, J. Andrews, and E. D. Nitto, Eds. ACM, 179-180.

ScHIMPF, J. AND SHEN, K. 2012. Ecl'ps® - from LP to CLP. Theory and Practice of Logic
Programming 12, 1-2, 127-156.

SEN, K., MARINOV, D., AND AGHA, G. 2005. CUTE: a concolic unit testing engine for
C. In Proc. of ESEC/SIGSOFT FSE 2005. ACM, 263-272.

SOMOGYI, Z., HENDERSON, F., AND CoNWAY, T. 1996. The execution algorithm of Mer-
cury, an efficient purely declarative Logic Programming language. The Journal of Logic
Programming 29, 1-3, 17-64.

STRODER, T., EMMES, F., SCHNEIDER-KAMP, P., GIesL, J., AND Funs, C. 2011. A
Linear Operational Semantics for Termination and Complexity Analysis of ISO Prolog.
In LOPSTR’11. Springer LNCS 7225, 237-252.

VASAK, T. AND POTTER, J. 1986. Characterization of terminating logic programs. In
Proc. of the 1986 Intl. Symp. on Logic Programming. IEEE, 140-147.

VipAL, G. 2015. Concolic Execution and Test Case Generation in Prolog. In Proc. of the
24th International Symposium on Logic-Based Program Synthesis and Transformation
(LOPSTR’14), M. Proietti and H. Seki, Eds. Springer LNCS 8981, 167-181.

WIELEMAKER, J., SCHRIJVERS, T., TRISKA, M., AND LAGER, T. 2012. SWI-Prolog.
Theory and Practice of Logic Programming 12, 1-2, 67-96.

14 F. Mesnard and E. Payet and G. Vidal

In this appendix we report, for the sake of completeness, some auxiliary contents
that, for space limitations, we could not include in the paper. Should this paper be
accepted, this appendix will not be included in the final version but in an accom-
panying technical report.

Appendix A Towards Extending Concolic Testing to Full Prolog

In this section, we show a summary of our preliminary research on extending con-
colic execution to deal with full Prolog. First, we consider the extension of the
concrete semantics. Here, we mostly follow the linear semantics of (Stroder et al.
2011), being the main differences that we consider built-ins explicitly, we excluded
dynamic predicates for simplicity —but could be added along the lines of (Stroder
et al. 2011)— and that, analogously to what we did in Section 2, only the first
answer for the initial goal is considered.

In the following, we let the Boolean function defined return true when its argu-
ment is an atom rooted by a defined predicate symbol, and false otherwise (i.e., a
built-in). Moreover, for evaluating relational and arithmetic expressions, we assume
a function eval such that, given an expression e, eval(e) either returns the evalua-

(success) (trues | S) — (successs)

. S#e
(failure) (i B)y) = (maria) (backtrack) (il B) ‘7; =19
(choice) defined(A) A clauses(A,P) = (c1,...,¢n) An > 0Am is fresh

(4, B)s]8) — (4,831 (A, By 7| 8)
(choice.fail) defined(A, P) A clauses(A, P) = {}

<(A,B)5|S> — (faiI5|S>
mgu(A,Hi) =0
((A,B)5* 7P| S) — ((Bio, Bo)so | S)

(unfold)

(cut)

(cut_fail)

(™, B)s | S"| 757 18) — (Bs| 75:15)
AV Am is fresh
((call(A), B)s | S) — ((A[V/call(V),!/t™], B)s | 75| S)
AeV
((call(A),B)s|S) — (ERRORs)
m is fresh
((\HA), B)s|5) — ((call(A),!™, fail)s | Bs | 75" |S)
mgu(ti,te) = o # fail
((tr = t2,B)5|S) — (Boss | S)
. eval(ez) = t2 # error
(is) ((t1 is e2,B)5|S) — {((t1 =t2,B)s]| S)

eval(t1 @ t2) = A € {true,fail}
((t1 & t2,B)5]S) — ((A4,B)s]| S)

<?gn | S> — <fai|5 |S>

(call)

(call_error)

(not)

mgu(t1,t2) = fail

{(t1 = t2,B)5|S) — (fails | S)
eval(ez) = error

((t1 is e2,B)5|S) — (ERRORs)

eval(t1 @ t2) = error
{(t1 ® t2,B)s5|S) — (ERRORs)

(unify) (unify_fail)

(is-error)

(rel)

(rel_error)

Fig. A1. Extended concrete semantics

Concolic Testing in Logic Programming 15

tion of e (typically a number or a Boolean value) or the special constant error when
the expression is not instantiated enough to be evaluated. E.g., eval(2 + 2) = 4,
eval(3 > 1) = true, but eval(X > 0) = error.

The transitions rules are shown in Figure A 1. In the following, we briefly explain
the novelties w.r.t. the rules of Section 2:

e In rule choice we use the notation c[!/!I"™] to denote a copy of clause ¢ where
the occurrences of (possibly labeled) cuts ! at predicate positions (e.g., not
inside a call), if any, are replaced by a labeled cut !™, where m is a fresh label.
Also, in the derived state, we add a scope delimiter 7™.

e Rule cut removes some alternatives from the current state, while rule cut_fail
applies when a goal reaches the scope delimiter without success.

e The rules for call and negation should be clear. Let us only mention that the
notation A[V/call(V),!/!™] denotes the atom A in which all variables X on
predicate positions are replaced by call(X) and all (possibly labeled) cuts on
predicate positions are replaced by !".

e Calls to the built-in predicate is are dealt with rules is and is_error by means
of the auxiliary function eval. Rules rel and rel_error proceed analogously with
relational operators like >, <, ==, etc.

Regarding the concolic execution semantics, we follow a similar approach to that of
Section 3. The labeled transition rules can be seen in Figure A 2. Now, we consider
six kinds of labels for ~»:

e The labels ¢ and ¢(£4, £2) with the same meaning as in the concolic semantics
of Section 3.

e The label wu(t1,ts), which is used to denote a unification step, i.e., the step
implies that ¢; and ¢ should unify.

e In contrast, the label d(t1,t2) denotes a disunification, i.e., the step implies
that t; and t5 should not unify.

e The label is(X,t) denotes a step where is is evaluated (see below).

e Finally, the label r(A’, A) denotes that the relational expression A’ should be
equal to A € {true, fail}.

In particular, in rules unify and unify_fail, the labels store the unification that
must hold in the step. Note that the fact that mgu(t;,t2) = fail does not imply
mgu(t],t5) = fail since t] and t§ might be less instantiated than ¢; and ¢s.

In rule is, we label the step with is(X, ¢}) which means that the fresh variable X
should be bound to the evaluation of ¢ after grounding it. Note that introducing
such a fresh variable is required to avoid a failure in the subsequent step with
rule unify because of, e.g., a non-ground arithmetic expression that could not be
evaluated yet to a value using function sym_eval. Note that rule is_error does not
include any label since we assume that an error in the concrete computation just
aborts the execution and also the test case generation process.

Finally, in rule rel we label the step with r(A’, A) where A is the value true/fail
of the relational expression in the concrete goal, and A’ is a (possibly nonground)
corresponding expression in the symbolic goal. Here, we use the auxiliary function
sym_eval to simplify the relational expression as much as possible. E.g., sym_eval(3 >
0) = true but sym_eval(3+2> X) =5 > X.

16 F. Mesnard and E. Payet and G. Vidal

These labels can be used for extending the concolic testing algorithm of Section 4.
For instance, given a concolic execution step labeled with (X > 0,true), we have
that solving (X > 0) will produce a binding for X (e.g., {X/0}) that will follow
an alternative path. Here, the concolic testing procedure will integrate a constraint
solver for producing solutions to negated constraints. We find this extension of the
concolic testing procedure an interesting topic for future work.

(success) (trues | S | trueg | S’) ~»o (SUCCESS; || SUCCESSg)
fail
(Failore) L Gail B)s T (Fail, B')a) ~o {faily | Failg)
S#e
back k
bkt (il B) [ST (il B) | §) o (ST)
(choice) defined(A) A clauses(A, P) =&, An > 0 Am is fresh A clauses(A’, P) = dj,
T @B (ST B, [9) o o
~ et ey (ABFY 4B e s
LBt B T s
. _ PR
(choice_fail) defined(A, P) A clauses(A,P) = {} A claus.es(A ,P) = Cr
((A,B)s | ST (A, B | S') ~c(qy,eer)) (fails | ST failg | S*)
(unfold) mgu(A, Hi1) = o Amgu(A’,H1) =o'
(A, BT B ST (A, BN P | 8) o (Bi0,Bo)se | ST (Bio?, B'o")gqr |)
cut
O @ By 1501 75 [STO™ B 191 755 157) e (Bs | 75 [S1B | 751151
t_fail
) o TS T2 1) o (il | S] faly | 57
(call) A&V Amis fresh
Y {(call(4), B)s | ST (call(A), B | 57)
~o ((AV/call(V),1/1™], B)s | 750 | ST (A'[V/call(V),!/1™],B)g | 75| S')
(call_error) AcVY
- ((call(A),B)s | S (call(A?),B")g | S’) ~ (errorg | errorg)
(not) m is fresh
(A B)s [STOHA). B 197 o ,
~o ((call(A), ™, fail)s | Bs | 7% | ST (call(A”), ™, fail)g | B, | 75 | S")
(unify) mgu(t1,t2) = o A mgu(t),th) = o’
uni
Y 6 =815 ST = 6,86 |5) ~wiur 1y, Boos |51 By, |57
i . mgu(t1,t2) = fail
unify_fail - -
R = 12, B)s [ST, = th, B)a | ') ~aqry 1y (Faily | S aily | 57)
(is) eval(ez) = ta # error A sym_eval(e}) =t A X is fresh
I
((t1is e2, B)s | ST (t] is €5, B")a | S') ~ig(x1y) (b1 =12, B)s | STty =X,B)g |)
(is.error) eval(ez2) = error
a ((t1is e2,B)s | S| (] is €5, B")g | S’) ~o (errors | errorg)
(rel) eval(t1 ® t2) = A € {true,fail} Asym_eval(t) & t)) = A’
((t1 @ t2, B)s | ST (8 @ 5,89 | S7) ~r(ar,a) (A, B)s | ST (A, B | 5)
(rel.error) eval(t1 @ t2) = error

((tr@t2,B)s | ST (t; ®t5,B)g | S') ~o (errors | errorg)

Fig. A 2. Extended concolic execution semantics

Concolic Testing in Logic Programming 17

Appendix B Proofs of Technical Results
B.1 Concolic Execution Semantics

Proof of Theorem 1
Since the base case ¢ = 0 trivially holds, in the following we only consider the
inductive case i > 0. Let C; = (B§|S | Dy | S’). By the inductive hypothesis, we

have |S| = |5, D < B, ¢ = ¢ (if any), and p(X,,)0 < p(¢,,)d. Now, we consider the
step C; ~ C;41 and distinguish the following cases, depending on the applied rule:

If the rule applied is success, failure, backtrack or choice_fail, the claim follows triv-
ially by induction.

If the rule applied is choice, let us assume that we have B = (4,B'), D = (A, D’)
and clauses(A, P) = ¢j, j > 0. Therefore, we have C;y1 = (B§' |...| By | S| Dg |
e |D;j | S7), and the claim follows straightforwardly by the induction hypothesis.

Finally, if the applied rule is unfold, then we have that B = (A4,B')§, D =
(A’, D) for some clause ¢ = Hy < B;. Therefore, we have Ciyq1 = ((B10,B'0)s5 |
S| (Bio',D'o")go | S’), where mgu(A, Hy) = o and mgu(A’,H;) = o'. First,
¢ = ¢ holds by vacuity since the goals are not labeled with a clause. Also, the
number of concrete and symbolic goals is trivially the same since |S| = |S’| by
the inductive hypothesis. Now, by the inductive hypothesis, we have D < B and
thus A’ < A and D' < B'. Then, since ¢ = mgu(A, Hy), ¢/ = mgu(4’, Hy),
Var(Hy < Bi) NVar(A) = {}, and Var(H; « By)NVar(A') = {}, it is easy to see
that A'c’ < Ao (and thus D'o’ < B'o) and o'|H; < o|H; (and thus Bio’ < Bio).
Therefore, we can conclude (Bio’,D'o’) < (Byo,B'0). Finally, using a similar ar-
gument, we have p(X,,)00" < p(t,)do.

O

B.2 Solving Unifiability Problems

The following auxiliary results are useful to prove the correctness of the algorithms
Pos (Definition 7) and PosNeg (Definition 8).

Lemma 1

Suppose that A0 = B for some atoms A and B and some substitution . Then we
have Afn = Bnfdn for any substitution n with [Dom(n) N Var(B)] N Dom(0) = {}
and Ran(n) N Dom(6n) = {}.

Proof
For any X € Var(B),

either X ¢ Dom(n) and then Xnfn = X6n

or X € Dom(n) and then Xnfn = (Xn)0n = Xn because Ran(n) N Dom(0n) = {}.
Moreover, X ¢ Dom(6) because [Dom(n) N Var(B)|NDom(0) = {}, so X0n = Xn.
Finally, Xnfn = X0n.

Consequently, Bnfn = BOn. As A0 = B, we have Afn = BOn i.e. AOn = Bnbn.
O

18 F. Mesnard and E. Payet and G. Vidal

Proposition 1
The loop at line 2 always terminates and the following statement is an invariant of
this loop.

(inv) For each A € A there exists B4 € B and a substitution §4 such that A6, =
Ba04; moreover, Var(B) N Dom(04 | A€ A) ={}.

Proof
Action (2b) reduces the number of simple disagreement pairs in B which implies
termination of the loop at line 2.

Let us prove that (inv) is an invariant. First, (inv) clearly holds upon initialization
of B. Suppose it holds prior to an execution of action (2b). Let ¢, ¢’ be the selected
simple disagreement pair. Then, we consider a substitution n determined by ¢,¢'.
For any X € Ran(n), we have X € Var(B) so X ¢ Dom(04 | A € A) by (inv).
Hence Ran(n) N Dom (64 | A € A) = {}. Moreover, as t,t' is a simple pair we have
Ran(n) N Dom(n) = {}. Hence,

Ran(n) N Dom(6an| A€ A)={}. (B1)

For any A € A and any X € Dom(n) N Var(Ba), we have X & Dom(64) by (inv).
Therefore, we have [Dom(n) N Var(Ba)] N Dom(04) = {}. Consequently, by (B1)
and Lemma 1 we have

A0 n = Banban .

Suppose by contradiction that Var(Bn) N Dom(0an | A € A) is not empty and let
X be one of its elements. We have X ¢ Dom(n) because Ran(n) N Dom(n) = {}, so
X € Dom(64 | A € A). Moreover, X ¢ Ran(n) by (B1) so X € Var(B). Therefore,
X € Var(B)NDom(04 | A € A) which by (inv) gives a contradiction. Consequently,

Var(Bn) N Dom(0an | Ae A) ={}.

So, (inv) holds upon termination of action (2b) because B is set to Bn. [

Proposition 2
The loop at line 3 always terminates and the following statement is an invariant of
this loop.

(inv') For each A € A there exists B4 € B and a substitution 64 such that A4 =
Ba04; moreover, Var(B) N Dom(f4 | A€ A) CU.

Proof
Action (3b) reduces the number of disagreement pairs in B which implies termina-
tion of the loop at line 3.

Let us prove that (inv’) is an invariant. By Proposition 1, (inv) holds upon
termination of the loop at line 2, hence (inv’) holds just before execution of the
loop at line 3. Suppose it holds prior to an execution of action (3b). Let ¢,¢' be the
selected disagreement pair. Then t,¢’ is replaced in B by a fresh variable U € U. Let
n = {U/t} and 0/ := {U/t'}. Both n and 7’ are substitutions because U # t and
U #t' (U is fresh). Let B, B’ be the atoms of B where ¢,t" come from and C,C’ be
the atoms obtained by replacing ¢,¢' in B, B’ by U. Then B = Cn and B’ = C'r/'.

Concolic Testing in Logic Programming 19

For any A € A, we have Af4 = B84 by (inv'). Moreover, A = An = An’ because
U does not occur in A. So if B4 = B then Anf4 = Cnf, and if By = B’ then
An'64 = C'n'6 4. Consequently, for any A € A let us set

0"y :=04 and By := B4 if By ¢ {B, B’}
0, =1, and B, := C if By = B
0"y :=n'64 and B}, :=C"if B4 = B’.

Then we have

VAe A A6, =BL0, . (B2)
Moreover, Dom(#', | A € A) C Dom(04 | A € A)U Dom(n) U Dom(n’) i.e.

Dom(0’y | A€ A) C Dom(0a | A€ A)U{U}. (B3)
As Var(C,C") C Var(B,B')U{U} then

Var(C,C") N Dom (0, | A A) CU

because Var(B,B’) N Dom(04 | A € A) C U by (inv') and Var(B,B')N{U} =
{U}N Dom(0s | A€ A) ={} and {U} N {U} C U. Moreover, by (inv’) we have
Var(B) N (Dom(04 | A€ A)U{U}) CU so by (B3)

Var(B) N Dom(0y | Ac A) CU .

Hence, Var(B\ {B,B'}U{C,C"})NDom (¢, | A € A) CU. With (B2) this implies
that upon termination of action (3b) the invariant (inv’) holds because B is set to
Cand B'to C!'. [

Proof of Theorem 2

Proposition 1 and Proposition 2 imply termination of the algorithm. Upon ter-
mination of the loop at line 3 we have |B] = 1. Let B be the element of B
and 7 be a substitution with Dom(n|B) NU = {} and Ran(n|B) = {}. Let
us set ' := n|B. Let A € A. By Proposition 2, there exists a substitution 64
such that Af4 = BO4. For any X € Dom(n’) N Var(B), we have X ¢ U hence
X & Dom(04) by Proposition 2. Therefore [Dom(n') N Var(B)] N Dom(64) = {}.
Moreover, Ran(n’) N Dom(64n’) = {} because Ran(n') = {}. Consequently, by
Lemma 1 we have A04n' = Bn047’ i.e., A and By’ = Bn unify.

O

Proof of Theorem 8

Each step of the algorithm terminates, hence the algorithm terminates. Note that
0 always exists as B unifies with each atom of the input of the first step, which
includes a copy of A. Assume that the algorithm returns a substitution o. The set
Go is ground by construction. Moreover, we have A0 = Bf hence Afn = BoOn i.e.
Ao = Bo. As Dom(o|B)NU = {} and Ran(c|B) = {}, by Theorem 2 we have that
Bo, hence Ao, unifies with all the atoms of H,,s. Finally, the last check ensures
that Ao does not unify with any atom of H—. []

The following example shows that the algorithm PosNeg is not complete.

20 F. Mesnard and E. Payet and G. Vidal

Ezample 6 (PosNeg)

Let A := p(X’ Y)a Hpos = {p(a,a)ap(b7b)}, Hneg = {P(Ca d)}a and G := {} The
algorithm of Section 4.2.1 applied to Hpos U {p(X’,Y")} returns B := p(U,U’). We
have § = {X/U,Y/U'} and GO = {}. We take n = id, then 6n = {X/U,Y/U'},
On|B = id, and Ran(6n|B) = {}. Let 0 = {X/U,Y/U’}, Dom(c|B) = {} does not
intersect with ¢/. At last, we have that Ao = p(U,U’) unifies with p(c,d) € Hpeg,
hence the algorithm returns fail. But for o’ := {X/U,Y/U} we have that Ao’ unifies
with each element of H,,s and does not unify with the element of H e, .

Appendix C Some More Examples on Solving Unifiability Problems

Ezample 7 (Pos)

Let A := {p(s(a)),p(s(b)),p(X)}. First the algorithm Pos sets B := A, then it
considers the simple disagreement pairs in B. The substitution n := {X/s(a)} is
determined by the pair s(a), X and action (2b) sets B to Bn = {p(s(a)),p(s(b))}.
Now no simple disagreement pair occurs in B hence the algorithm skips to the loop
at line 3. Action (3b) replaces the pair a,b with a fresh variable U € U, hence B
is set to {p(s(U))}. As |B| = 1 the loop at line 3 stops and the algorithm returns

p(s(U)).

Ezample 8 (Pos)

Let A := {p(s(a), s(c)),p(s(b), s(c)),p(Z, Z)}. First the algorithm sets B := A, then
it considers the simple disagreement pairs in B. The substitution n := {Z/s(c)} is
determined by Z, s(c). Action (2b) sets B to Bn i.e. to

{p(s(a), s5(c)), p(s(b), s(¢)), p(s(c), s(c))} -

Now no simple disagreement pair occurs in B hence the algorithm skips to the loop
at line 3.

e Action (3b) replaces the disagreement pair a,b with a fresh variable U € U,
hence B is set to {p(s(U), s(c)), p(s(c), s(c))}.

e Action (3b) replaces the disagreement pair U, ¢ with a fresh variable U’ € U,
hence B is set to {p(s(U’), s(c))}.

As |B| =1 the loop at line 3 stops and the algorithm returns p(s(U’), s(c)).

Ezample 9 (Pos)
Let A : {p(s(f(X)),X),p(s(g9(a)),Y),p(Z,Z)}. First the algorithm sets B := A,
then it considers the simple disagreement pairs in B.

e The pair X,Y is simple and 7, := {Y/X} is determined by X,Y. Action (2b)
sets B to By . to {p(s(f(X)), X), p(s(9(a)), X), p(Z, 2)}.

e The pair X, Z is simple and 7y := {Z/X} is determined by X, Z. Action (2b)
sets B to Bip ie. to {p(s(f(X)), X). p(s(g(a)). X). p(X. X)}.

e The pair X, s(g(a)) is simple and 13 := {X/s(g(a))} is determined by X, s(g(a)).
Action (2b) sets B to Bns i.e. to

{p(s(f(s(9(a)))); 5(g(a))), p(s(g(a)),s(g(a)))} -

Concolic Testing in Logic Programming 21

Now no simple disagreement pair occurs in I hence the algorithm skips to the loop
at line 3. Action (3b) replaces the disagreement pair f(s(g(a))), g(a) with a fresh
variable U € U, hence B is set to {p(s(U), s(g(a)))}. As |B|] =1 the loop at line 3
stops and the algorithm returns p(s(U), s(g(a))).

We note that the set B used by the algorithm Pos of Definition 7 may contain
several occurrences of a same, non-simple, disagreement pair. In such a situation,
the algorithm replaces each occurrence with a different variable of I/, which may
introduce some imprecision. A solution may consist in replacing each occurrence by
the same variable but we have to be careful as illustrated by the following example.

Ezample 10 (Pos)
Let A := {p(a,a),p(b,b)}. The disagreement pair a,b is not simple and it occurs
twice in A. Action (3b) replaces each occurrence of a,b with a different variable of
U and the algorithm returns p(U, U’). Instead, if we replace each occurrence of a,b
with the same variable we get p(U, U) which unifies both with p(a,a) and p(b, b).
Now let A := {p(a,b), p(b,a)}. The disagreement pair a, b is not simple. It occurs
twice in A but we cannot replace each occurrence with the same variable U of U
because p(U, U) unifies with none of the atoms of A.

