
A Semantics for Tracing
Declarative Multi-Paradigm Programs ∗

B. Brassel M. Hanus F. Huch
Institut für Informatik

CAU Kiel, Olshausenstr. 40
D-24098 Kiel, Germany

{bbr,mh,fhu}@informatik.uni-kiel.de

G. Vidal
DSIC, Technical University of Valencia

Camino de Vera s/n, E-46022 Valencia, Spain
Phone: +34.96.3877350 / Fax: +34.96.3877359

gvidal@dsic.upv.es

ABSTRACT
We introduce the theoretical basis for tracing lazy functional
logic computations in a declarative multi-paradigm language
like Curry. Tracing computations is a difficult task due to
the subtleties of the underlying operational semantics which
combines laziness and non-determinism. In this work, we
define an instrumented operational semantics that gener-
ates not only the computed values and bindings but also
an appropriate data structure—a sort of redex trail—which
can be used to trace computations at an adequate level of
abstraction. In contrast to previous approaches, which rely
solely on a transformation to instrument source programs,
the formal definition of a tracing semantics improves the
understanding of the tracing process. Furthermore, it al-
lows us to formally prove the correctness of the computed
trail. A prototype implementation of a tracer based on this
semantics demonstrates the usefulness of our approach.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming; D.1.6 [Programming Techniques]:
Logic Programming; D.2.5 [Software Engineering]: Test-
ing and Debugging; D.3.1 [Programming Languages]:
Formal Definitions and Theory

General Terms
Languages, Theory

Keywords
Functional Logic Programming, Tracing, Semantics

∗This work has been partially supported by CICYT TIC
2001-2705, by Generalitat Valenciana CTIDIA/2002/205
and GRUPOS03/025, by EU-India Economic Cross Cultural
Prog. ALA/95/23/2003/077-054, by MCYT HA2001-59 and
HU2003-003, and by the DFG under grant Ha 2457/1-2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’04, August 24–26, 2004, Verona, Italy.
Copyright 2004 ACM 1-58113-819-9/04/0008 ...$5.00.

1. INTRODUCTION
Declarative languages offer many facilities for reasoning

about the extensional properties of programs—mainly, to
study the correctness of program analyses and transforma-
tions. However, intensional or operational properties are
much harder to analyze. Features like laziness and non-
determinism make modern functional logic languages (e.g.,
Curry [9, 11] and Toy [13]) more powerful but also opera-
tionally more complex. For instance, from the programmer’s
point of view, following the actual trace of a computation is
almost useless when debugging Curry programs.

In lazy functional languages like Haskell [16], several works
have advocated the construction of declarative traces that
hide the details of lazy evaluation. The main such ap-
proaches are: Freja [15], which is based on the algorith-
mic debugging technique from logic programming [17], Hat
[18], which enables the exploration of a computation back-
wards starting at the program output or error message, and
Hood [7], which allows the programmer to observe the data
structures at given program points. Recently, Hat has been
improved in such a way that it covers all previous three ap-
proaches thanks to the construction of an extended trail [19]:
the augmented redex trail (ART).

In general, these approaches to debugging are based on
some program transformation. For instance, Hat’s ART is
defined (indirectly) through the transformation that enables
its creation: the source program is first instrumented and,
then, executed to create the trail. Therefore, it is not easy to
understand how the ART of a computation should be con-
structed (e.g., by hand), it remains unclear which assump-
tions about the operational semantics are made and, most
importantly, there are no correctness results for the trans-
formation [5]. In contrast, providing a direct, semantics-
based definition of ARTs would improve the understanding
of the tracing process and allow to prove properties like “ev-
ery reduction occurring in a computation can be observed
in the trail”. Chitil [5] presents a first approach to such a
direct definition by presenting an augmented small-step op-
erational semantics for a core of Haskell that generate ARTs.
However, this work does not consider correctness issues.

In this paper, we share the aims of [5] but consider a lazy
functional logic language. More precisely, we define an in-
strumented version of a small-step operational semantics for
a core of Curry [1] that returns not only the computed val-
ues and bindings but also a trail of the computation (which
is similar to an ART but also includes logical variables).

Similarly to [19], this trail can be used to perform trac-
ing and algorithmic debugging, as well as to observe data
structures through a computation. Furthermore, we state
the correctness of the computed trail, which amounts to say
that it contains all (and only) the reductions performed in
a computation. To the best of our knowledge, this is the
first correctness result for redex trails in the literature. The
usefulness of our approach is tested by means of a proto-
type implementation of a Curry tracer based on the ideas
presented in this work.

This paper is organized as follows. In the next section, we
recall some foundations for understanding the subsequent
developments. Section 3 introduces our model for tracing
functional logic computations and illustrates it with some
examples. Section 4 formalizes an instrumented semantics
which builds the trail of a computation. The correctness of
the instrumented semantics is then shown in Section 5. Sec-
tion 6 describes an implementation of a Curry tracer based
on the instrumented semantics. Section 7 includes a com-
parison to related work and, finally, Section 8 concludes and
points out several directions for further research.

2. FOUNDATIONS
In this section, we describe the kernel of a multi-paradigm

functional logic language whose execution model combines
lazy evaluation with non-determinism. In this context, a
program is a set of function definitions where each function
is defined by rules describing different cases for input ar-
guments. For instance, the conjunction on Boolean values
(True, False) can be defined by

and True y = y

and False y = False

where data constructors usually start with upper case letters
and function application is denoted by juxtaposition. There
are no limitations w.r.t. overlapping rules; in particular, one
can also have non-confluent rules to define functions that
yield more than one result for a given input (these are called
non-deterministic operations). For instance, the operation
“choose” non-deterministically returns one of its arguments:

choose x y = x

choose x y = y

Similarly to [8], we follow the “call-time choice” semantics
where all descendants of a subterm are reduced to the same
value in a derivation, e.g., the expression

double (choose 1 2)

w.r.t. the definition

double x = x + x

reduces non-deterministically to one of the values 2 or 4 (but
not to 3). This choice is consistent with a lazy evaluation
strategy where all descendants of a subterm are shared [12].

In order to provide a simple operational description, we as-
sume that source programs are translated into a “flat” form,
which is a convenient standard representation for functional
logic programs. The main advantage of the flat form is the
explicit representation of the pattern matching strategy by
the use of case expressions which is important for the op-
erational reading. Moreover, source programs can be easily
(and automatically) translated into this flat form [10]. The
syntax for flat programs is shown in Figure 1, where we write
on for the sequence of objects o1, . . . , on.

Program
P ::= D1 . . . Dm

Definition
D ::= f(x1, . . . , xn) = e

Expression
e ::= x (variable)

| c(e1, . . . , en) (constructor call)
| f(e1, . . . , en) (function call)
| case e of {pn → en} (rigid case)
| fcase e of {pn → en} (flexible case)
| e1 or e2 (disjunction)
| let xn = en in e (let binding)

Pattern
p ::= c(x1, . . . , xn)

Figure 1: Syntax for flat programs

A program P consists of a sequence of function defini-
tions D such that the left-hand side has pairwise different
variable arguments. The right-hand side is an expression
e ∈ Exp composed by variables {x, y, z, . . .} ∈ Var , data
constructors (e.g., a, b, c,. . .), function calls (e.g., f , g,
h,. . .), case expressions, disjunctions (e.g., to represent non-
deterministic operations), and let bindings where the local
variables x1, . . . , xn are only visible in e1, . . . , en, e. A case
expression has the following form:1

(f)case e of {c1(xn1
) → e1; . . . ; ck(xnk

) → ek}

where e is an expression, c1, . . . , ck are different constructors,
and e, e1, . . . , ek are expressions. The pattern variables xni

are locally introduced and bind the corresponding variables
of the subexpression ei. The difference between case and
fcase only shows up when the argument e evaluates to a
free variable: case suspends the computation whereas fcase
non-deterministically binds this variable to the pattern in a
branch of the case expression. Let bindings are in principle
not required for translating source programs but they are
convenient to express sharing without the use of complex
graph structures (like, e.g., [6]).

As an example of the flat representation, we show the
translation of functions “and” and “choose” into flat form.
Here and in the following examples, for the sake of read-
ability, we omit some of the brackets and write function
applications as in Curry:

and x y = fcase x of { True -> y;

False -> False }
choose x y = x or y

Laziness (or neededness) of computations will show up in
the description of the behavior of function calls and case
expressions. In a function call, parameters are not evaluated
but directly passed to the body of the function. In a case
expression, the outermost symbol of the case argument is
required. Therefore, the case argument should be evaluated
to head normal form (i.e., a free variable or an expression
with a constructor at the outermost position).

Extra variables are those variables in a rule which do not
occur in the left-hand side. Such extra variables are in-
tended to be instantiated by flexible case expressions. For

1We write (f)case for either fcase or case.

instance, in Curry programs, they are usually introduced by
a declaration of the form:

let x free in expression

As Antoy [2] pointed out, the use of extra variables in a
functional logic language causes no conceptual problem if
these extra variables are renamed whenever a rule is applied.
We will model this renaming similarly to the renaming of
local variables in let bindings. For this, we assume that all
extra variables x are explicitly introduced in flat programs
by a direct circular let binding of the form

let x = x in expression

Throughout this paper, we call such variables which refer
to themselves logical variables. For instance, an expres-
sion x + y with logical variables x and y is represented as
let x = x, y = y in x + y.

The flat representation of programs constitutes the kernel
of modern declarative multi-paradigm languages like Curry
[9, 11] or Toy [13].

3. A MODEL FOR TRACING
In this section, we informally describe our tracing model

for lazy functional logic programs; we postpone the formal
definition of trails to the next section.

The original redex trail structure of [18] is a directed graph
which records copies of all values and redexes (reducible
expressions) of a computation, with a backward link from
each reduct (and each proper subexpression contained within
it) to the parent redex that created it. The ART (Aug-
mented Redex Trail) model mainly extends the original re-
dex trails by also including forward links from every redex
to its reduct (see [19] for a detailed description). Thanks
to this extension, the same data structure can be used to
perform—when defining an appropriate viewer—tracing [18]
and algorithmic debugging [15] as well as to print Hood’s
observations [7].

In order to trace lazy functional logic programs, we con-
sider a data structure which shares many similarities with
ARTs but also includes a special treatment to record the
binding of logical variables.

We illustrate our approach by the following flat program:

Example 3.1.

selfAnd x = and x x

and x y = fcase x of { False -> False;

True -> y }
choose x y = x or y

main = selfAnd (choose False True)

From now on, we assume that computations always start
from the distinguished function main which has no argu-
ments. The execution of the program above produces (non-
deterministically) two trails, one associated to the computed
value False and another one associated to the computed
value True. Figure 2 shows the redex trails corresponding
to these two computations.

In general, our graphs contain three types of arrows:

• Successor arrows: There is a successor arrow, denoted
by a solid arrow, from each redex to its reduct (e.g.,
from main to selfAnd in Fig. 2).

main selfAnd and

choose

fcase

or False

False

main selfAnd and

choose

fcase

or True

True

Figure 2: Redex trails for Example 3.1

• Argument arrows: Arguments of function and con-
structor calls are denoted by a pointer to the corre-
sponding expression. Note that, when the evaluation
of an argument is not required in a computation, we
have a null pointer for that argument (e.g., the second
argument of choose in the first graph of Fig. 2).

• Parent arrows: They are denoted by dotted arrows
and point either to the redex from which it results
(thus, the inverse of the corresponding successor ar-
row) like, e.g., from selfAnd to main in Fig. 2, or to
the expression who demanded its evaluation, e.g., from
choose to fcase.

Note that our notion of parent is different from that in [18,
19]. In these works, a parent arrow points to the redex that
introduced a particular expression (i.e., every subexpression
in the right-hand side of a rule points to the redex which
called to this function). In contrast, we have a parent arrow
from an expression to the expression that first demanded its
evaluation.

From the computed trails, we developed a tool that navi-
gates through them and allows the user to inspect the trace
of any given computation. In particular, since the execution
of main gives rise (non-deterministically) to either False and
True, our tool initially shows

main -> False

-> True

to point out that two results were computed. If the user
selects the first result, False, then the following trace is
shown:

False = main

False = selfAnd False

False = and False False

False = False

This is the top-level trace of the execution of main. Each
row shows a pair “val = exp” where exp is an expression
and val is its value. Note that function arguments ap-
pear fully evaluated—i.e., as much as needed in the com-
plete computation—in order to ease the understanding of
the trace. Basically, the fully evaluated arguments are re-
trieved by following forwards both the argument and suc-
cessor arrows. Every trace shows a computation from the
final result (bottom line) to the initial function call (top line)
following the parent arrows.

In our tracing tool, the user can also select any argument
of an expression in order to see the associated trace. For

instance, if we select the first argument of “and”, the tool
shows the following trace:

False = and False False

False = choose False _

False = False

Here, we denote by “_” an argument whose evaluation is not
needed (i.e., a null pointer); in this particular case, because
function choose returns the first argument and ignores the
second one.

Consider now the following example where function main

contains a logical variable:

Example 3.2.

data Person = Christine | Antony | Monica

| John | Susan | Peter

mother c = fcase c of { John -> Christine;

Susan -> Monica;

Peter -> Monica }

father c = fcase c of { John -> Antony;

Susan -> John;

Peter -> John }

parent x = (father x) or (mother x)

grandfather c = father (parent c)

main = let x = x in grandfather x

Here, the execution of function main produces six trails, as-
sociated with the following (non-deterministic) results:

main -> Fail

-> Antony

-> Antony

-> Fail

-> Fail

-> Fail

Note that failing derivations are also shown, which is par-
ticularly useful for debugging.

Figure 3 shows the trail of the first result Antony. If the
user selects it, the following top-level trace is shown:

Antony = main

Antony = grandfather x/Susan

Antony = father John

Antony = Antony

The expression “x/Susan” means that the argument was
originally a logical variable which was bound to Susan in
the selected computation. Now, if we select the argument
of grandfather, we get the following trace:

Antony = grandfather x/Susan

Antony = father John

John = parent x/Susan

John = father x/Susan

Susan = x/ Susan

From this trace, one can easily see that the logical vari-
able was bound to Susan during the evaluation of function
father, and then propagated backwards until the initial call
to grandfather.

main let ... grandfather father

LogVar

fcase

parent

Antony

fcase

Susan

orfather

John

Figure 3: A redex trail for Example 3.2

4. A TRACING SEMANTICS
This section introduces an instrumented version of the

small-step operational semantics of [1] which additionally
builds the trail of a computation. In order to cope with
sharing, the original small-step semantics requires programs
to be normalized. Normalization ensures that the arguments
of function and constructor calls are always variables (not
necessarily pairwise different). These variables will be inter-
preted as references to express sharing.

Definition 4.1 (normalization [1]). The normaliza-
tion of an expression e flattens all the arguments of function
(or constructor) calls by means of the mapping e∗ which is
inductively defined as follows:

x∗ = x

ϕ(xn)∗ = ϕ(xn)
ϕ(xi−1, em)∗ = let xi = e∗1 in

ϕ(xi, e2, . . . , em)∗

where e1 6∈ Var, xi is fresh
(let xk = ek in e)∗ = let xk = ek

∗ in e∗

(e1 or e2)
∗ = e1

∗ or e2
∗

((f)case x of {pk → ek})
∗ = (f)case x of {pk 7→ ek

∗}
((f)case e of {pk → ek})

∗ = let x = e∗ in

(f)case x of {pk 7→ ek
∗}

where e 6∈ Var, x is fresh

Here, ϕ denotes a constructor or function symbol. The ex-
tension of normalization to flat programs is straightforward,
i.e., each rule f(xn) = e is transformed into f(xn) = e∗.

For simplicity, the normalization mapping above introduces
one new let construct for each non-variable argument. Triv-
ially, this could be modified in order to produce one sin-
gle let with the bindings for all non-variable arguments of
a function (or constructor) call, which we assume for the
subsequent examples. In the following, we consider only
normalized flat programs.

For instance, the normalization of function main in Ex-
ample 3.1 is as follows:

main = let x = False, y = True, z = choose x y

in selfAnd z

The instrumented operational semantics is shown in Fig-
ure 4. It obeys the following naming conventions:

Γ, ∆, Θ ∈ Heap = Var → Exp v ∈ Value ::= x | c(en)

A heap is a partial mapping from variables to expressions
(the empty heap is denoted by []). The value associated to
variable x in heap Γ is denoted by Γ[x]. Γ[x 7→ e] denotes
a heap with Γ[x] = e, i.e., we use this notation either as a
condition on a heap Γ or as a modification of Γ. In a heap

Rule Heap Control Stack Graph Ref. Par.

varcons Γ[x 7→ t] x S G r p

=⇒ Γ[x 7→ t] t S G 1 (x r) r p

varexp Γ[x 7→ e] x S G r p

=⇒ Γ[x 7→ e] e x : S G 1 (x r) r p

val Γ v x : S G r p

=⇒ Γ[x 7→ v] v S G r p

fun Γ f(xn) S G r p

=⇒ Γ ρ(e) S G[r
p
7→
q

f(xn)] q r

let Γ let xk = ek in e S G r p

=⇒ Γ[yk 7→ ρ(ek)] ρ(e) S G[r
p
7→
q

ρ(let xk = ek in e)] q r

or Γ e1 or e2 S G r p

=⇒ Γ ei S G[r
p
7→
q

e1 or e2] q r

case Γ (f)case x of {pk → ek} S G r p

=⇒ Γ x ((f){pk → ek}, r) : S G[r
p
7→ (f)case x of {pk → ek}] q r

select Γ c(yn) ((f){pk → ek}, r
′) : S G r p

=⇒ Γ ρ(ei) S G[r
p
7→ c(yn), r′ 7→

q
] q r′

guess Γ[y 7→ y] y (f{pk → ek}, r
′) : S G r p

=⇒ Γ[y 7→ ρ(pi), yn 7→ yn] ρ(ei) S G[r
p
7→
q

LogV ar, q
r′

7→ ρ(pi),

y r, r′ 7→
s

] s r′

where in varcons: t is constructor-rooted
varexp: e is not constructor-rooted and e 6= x

val: v is constructor-rooted or a variable with Γ[v] = v

fun: f(yn) = e ∈ P and ρ = {yn 7→ xn}
let: ρ = {xk 7→ yk} and yk are fresh
or: i ∈ {1, 2}
select: pi = c(xn) and ρ = {xn 7→ yn}
guess: i ∈ {1, . . . k}, pi = c(xn), ρ = {xn 7→ yn}, and yn are fresh

Figure 4: Small-Step Tracing Semantics

Γ, a logical variable x is represented by a circular binding of
the form Γ[x] = x. A value is a constructor-rooted term or
a logical variable (w.r.t. the associated heap).

A configuration of the semantics is a tuple (Γ, e, S, G, r, p),
where Γ is the current heap, e is the expression to be eval-
uated (often called the control of the small-step semantics),
S is the stack (a list of variable names and case alternatives
where the empty stack is denoted by []) which represents
the current context, G is a directed graph (the trail built so
far), and r, p are references for the current and parent nodes
of the expression in the control (see below).

For the time being, we ignore the last three columns (which
are responsible of the construction of the trail) and focus
on the standard component of the transition rules (columns
Heap, Control and Stack):

(varcons) This rule is used to evaluate a variable x which
is bound to a constructor-rooted term t in the heap.
Trivially, it returns t as a result of the evaluation.

(varexp and val) In order to evaluate a variable x that is
bound to an expression e (which is not a value), this
rule starts a subcomputation for e and adds the vari-
able x to the stack. If a value v is eventually computed
and there is a variable x on top of the stack, rule val
updates the heap with the binding x 7→ v.

(fun) This rule performs a simple function unfolding (pro-
gram P is a global parameter of the calculus).

(let) In order to reduce a let construct, this rule adds the
bindings to the heap and proceeds with the evaluation
of the main argument of let. Note that we rename the
variables introduced by the let construct with fresh
names in order to avoid variable name clashes.

(or) This rule non-deterministically evaluates an or expres-
sion by either evaluating the first argument or the sec-
ond argument.

(case, select, and guess) Rule case initiates the evaluation of
a case expression by evaluating the case argument and
pushing the alternatives (f){pk → ek} on top of the
stack (together with the current graph reference r, see
below). If we reach a constructor-rooted term, then
rule select is applied to select the appropriate branch
and continue with the evaluation of this branch. If we
reach a logical variable and the case expression on the
stack is flexible (i.e., of the form f{pk → ek}), then
rule guess is used to non-deterministically choose one
alternative and continue with the evaluation of this
branch; moreover, the heap is updated with the bind-
ing of the logical variable to the corresponding pattern.

Now, we discuss the construction of the trail (columns Graph,
Ref., and Par.). Similarly to the ART model, our trail is a
directed graph with nodes identified by references2 that are
labeled with expressions. We adopt the following conven-
tions:

• We write r 7→ e to denote that the node with reference
r is labeled with expression e.

• Successor arrows are denoted by r 7→
q

which means

that node q is the successor of node r.

• Analogously, parent arrows are denoted by r
p
7→ which

means that node p is the parent of node r.

• Often, we write r
p
7→
q

e to denote that node r is labeled

with expression e, node p is the parent of r, and node

q is the successor of r. Similarly, we also write r
p
7→ e

when the successor node is yet unknown (e.g., in rule
case) or if there is no successor (e.g., in rule select).

• Argument arrows are denoted by x r which means
that variable x points to node r. This is safe in our
context since only variables can appear as arguments
of function and constructor calls. Hence, these arrows
are also called variable pointers.

In general, given a configuration (Γ, e, S, G, r, p), G denotes
the graph built so far (not yet including the current expres-
sion e), r represents a fresh reference to store the current
expression e in the control (with some exceptions, see be-
low), and p denotes the parent of r. The basic idea of the
graph construction is to record the actual control at the ac-
tual reference in every step. A brief explanation for each
rule of the semantics follows:

(varcons and varexp) These rules are used to perform a vari-
able lookup in the heap. If one of these rules is applied,
it means that the evaluation of variable x is needed in
the computation and, thus, a variable pointer for x

should be added to the current graph G if it does not
yet contain such a pointer . For this purpose, we in-
troduce function 1 which is defined as follows:

G 1 (x r) =

�
G[x r] if 6 ∃r′. (x r′) ∈ G

G otherwise

Intuitively, function 1 is used to take care of sharing:
if the value of a given variable has already been de-
manded in the computation, no new variable pointer
is added to the graph.

(val) This rule is only used to update the heap; therefore,
the current graph is not modified.

(fun) Whenever this rule is applied, node r (the value in
column Ref.) is added to the graph. The node is la-
beled with the function call f(xn) and has parent p

(the value in column Par.) and successor q (a fresh
reference). In the new configuration, r becomes the
parent reference (Par.) and the fresh reference q rep-
resents the current reference (Ref.).

2The domain for references is not fixed. For instance, we
can use natural numbers as references but more complex
domains are also possible.

(let and or) They proceed in a similar way as the previous
rule by introducing the node for either the (renamed)
let expression or the disjunction.

(case) This rule initiates the evaluation of the case expres-
sion. Therefore, it adds node r to the graph which
is labeled with the case expression. We set p as the
parent of r but include no successor since it will not
be known until the case argument is evaluated to head
normal form. For this reason, reference r is also stored
in the stack (together with the case alternatives) so
that rules select and guess may eventually set the right
successor for r.

(select) This rule adds node r to the graph which is labeled
with the computed value c(yn). It sets p as the parent
of r but includes no successor since values are fully
evaluated. Reference r′ (stored in the stack) is used
to set the right successor for the case expression that
initiated the subcomputation: the fresh reference q.
Note that, in the derived configuration, we have r′ as
parent reference—the case expression—rather than r.

(guess) This rule proceeds in a similar way as the previous
one. The main difference is that the computed value
is a logical variable. Here, we add node r to the graph
which is labeled with a special symbol LogV ar, and
whose successor is a new node q which is labeled with
the selected binding for the logical variable.

Clearly, the instrumented semantics is a conservative ex-
tension of the original small-step semantics of [1], since the
last three columns of the calculus impose no restriction on
the application of the standard component of the semantics
(columns Heap, Control, and Stack). This is a trivial but an
essential property of our tracing semantics.

In order to perform computations, we construct an initial
configuration and (non-deterministically) apply the rules of
Figure 4.

Definition 4.2 (initial configuration).
An initial configuration has the form: 〈[], main, [], G∅, r, 2〉,
where G∅ denotes an empty graph, r is a reference and 2

denotes the null reference.

In principle, successful derivations end with a configuration
which contains a value (a constructor-rooted term or a log-
ical variable) in the control and an empty stack. In this
case, the computed answer can easily be extracted from the
final heap by dereferencing the logical variables introduced
through the computation. Unfortunately, in such a configu-
ration, the computed value will not appear in the associated
graph (since expressions are added to the graph after eval-
uation). On the other hand, we are interested not only in
the trace of successful derivations but also in the trace of
failing derivations, since this information may be relevant
for debugging.

In order to overcome these drawbacks, we extend the se-
mantics with four new rules, depicted in Figure 5. These
rules proceed as follows:

(select-f) This rule is the counterpart of rule select when
there is no matching branch in the case expression. In
contrast to select, the control of the derived configura-
tion contains the special symbol Fail (a constructor).

Rule Heap Control Stack Graph Ref. Par.

select-f Γ c(yn) ((f){pk → ek}, r
′) : S G r p

=⇒ Γ Fail S G[r
p
7→ c(yn), r′ 7→

q
] q r′

guess-f Γ[y 7→ y] y ({pk → ek}, r
′) : S G r p

=⇒ Γ[y 7→ y] Fail S G[r
p
7→ LogV ar, y r, r′ 7→

s
] s r′

success-c Γ c(xn) [] G r p

=⇒ Γ ⋄ [] G[r
p
7→ c(xn)] 2 r

success-x Γ[x 7→ x] x [] G r p

=⇒ Γ[x 7→ x] ⋄ [] G[r
p
7→ LogV ar, x r] 2 r

where in select-f: 6 ∃i ∈ {1, . . . , k} such that pi = c(xn)

Figure 5: Extensions to the Tracing Semantics

(guess-f) It applies when we have a logical variable in the
control and (the alternatives of) a rigid case expres-
sion on top of the stack. Similarly to the previous rule,
we put the special symbol Fail in the control of the de-
rived configuration. Note that we make no distinction
between failures and suspensions since concurrency is-
sues are not considered in this paper.

(success-c) and (success-x) They apply to configurations in
which the stack is empty (i.e., there are no pending
subcomputations) and the control contains a value. In
either case, a new node r—labeled with the computed
value—is added. In the derived configuration, we put
the special symbol ⋄ into the control (with current ref-
erence 2) to denote that no further steps are possible.

Now, a final configuration is defined as follows:

Definition 4.3 (final configuration).
A final configuration has the form: 〈∆, ⋄, [], G, 2, p〉, where
∆ is a heap, G is a graph and p is a reference.

We denote by =⇒∗ the reflexive and transitive closure of
=⇒. A derivation C =⇒∗ C′ is complete if C is an initial
configuration and C′ is a final configuration. In general,
derivations can be either complete or incomplete, e.g., if the
user stops the derivation before it finishes (the only possi-
bility when the derivation is infinite).

We illustrate the tracing semantics with a simple example.
Consider the following program:

mother x = fcase x of { John -> Christine;

Peter -> Monica }

father x = fcase x of { Peter -> John }

main = let x = x, y = father x in mother y

The complete computation with the rules of Figures 4 and
5 is shown in Figure 6. Here, we consider natural numbers
as references (thus, the initial reference is 0). For clarity,
each computation step is labeled with the applied rule and,
in each configuration, G denotes the graph of the previous
configuration. The computed trail is depicted in Figure 7.

Similarly to the original small-step semantics of [1], our
tracing semantics is non-deterministic, i.e., it computes a
different trail—a graph—for each non-deterministic compu-
tation from the initial configuration. In practice, however,
it is more convenient to build a single graph that comprises
all possible non-deterministic paths (see Section 6).

5. CORRECTNESS
In this section, we formally prove the correctness of our

tracing semantics. Essentially, we prove the following basic
properties for the instrumented computations:

1. For each “relevant” (see below) expression in a compu-
tation, the graph stores a node which is labeled with
such an expression (Proposition 5.2).

2. Whenever an expression is reduced, we have the cor-
responding successor and parent arrows in the graph
(Proposition 5.5).

3. For each variable whose value is demanded in a com-
putation, we have an associated variable pointer in the
graph (Proposition 5.8).

4. Whenever a case expression demands the evaluation
of its argument, we have a parent arrow in the graph
from such an argument to the case expression that
demanded its evaluation (Propositions 5.9 and 5.10).

The following definition formalizes the notion of relevant
configuration. Roughly speaking, a configuration is relevant
when its control contains an expression that will be stored
in the graph in the next computation step.

Definition 5.1 (relevant configuration).
A configuration 〈∆, e, S, G, r, p〉 is relevant iff one of the fol-
lowing conditions hold:

• e is a value (w.r.t. ∆, i.e., a constructor call or a vari-
able x with ∆[x] = x) and the stack S is not headed by
a variable, or

• e is a function call, a let expression, a disjunction, or
a case expression.

0:main 1:let ... 2:mother 3:fcase

4:father

9:Christine

5:fcase

6:LogVar

8:John

7:Peter

Figure 7: Trail of the computation in Figure 6

〈[],main,[],G∅,0,2〉

=⇒fun 〈[],let x=x,y=father x in mother y, [0
2

7→
1

main],1,0〉

=⇒let 〈[x 7→x,y7→father x],mother y,[], G[1
0
7→
2
let x=x,y=father x in mother y],2,1〉

=⇒fun 〈[x 7→x,y7→father x],fcase y of {John → Christine, Peter → Monica} ,[], G[2
1
7→
3

mother y],3,2〉

=⇒case 〈[x 7→x,y7→father x],y,[(f{John → Christine, Peter → Monica},3)],

G[3
2
7→ fcase y of {John → Christine, Peter → Monica}],4,3〉

=⇒varexp 〈[x 7→x,y7→father x],father x,[y,(f{John → Christine, Peter → Monica},3)],G[y 4],4,3〉
=⇒fun 〈[x 7→x,y7→father x],fcase x of {Peter → John}, [y,(f{John → Christine, Peter → Monica},3)],

G[4
3
7→
5

father x],5,4〉

=⇒case 〈[x 7→x,y7→father x],x, [(f{Peter → John},5),y,(f{John → Christine, Peter → Monica},3)],

G[5
4
7→ fcase x of {Peter → John}],6,5〉

=⇒guess 〈[x 7→Peter,y7→father x],John, [y,(f{John → Christine, Peter → Monica},3)],

G[6
5
7→
7

LogVar, 7
5
7→ Peter, x 6, 5 7→

8
],8,5〉

=⇒val 〈[x 7→Peter,y7→John],John, [(f{John → Christine, Peter → Monica},3)],G,8,5〉

=⇒select 〈[x 7→Peter,y7→John],Christine, [], G[8
5
7→ John, 3 7→

9
],9,3〉

=⇒success−c 〈[x 7→Peter,y7→John],⋄, [], G[9
3
7→ Christine],2,9〉

Figure 6: An Example of Tracing Computation

An expression is relevant if it appears in the control of a
relevant configuration.

In the following, given a configuration C = 〈∆, e, S, G, r, p〉,
we define heap(C) = ∆, control(C) = e, stack(C) = S, and
graph(C) = G. The following result states that, given a
relevant configuration 〈∆, e, S, G, r, p〉, e will be added—in
the next step—to G with reference r and parent p.

Proposition 5.2. Let (C0 =⇒∗ Cn), n > 0, be a deriva-
tion. There is a relevant configuration Ci = 〈∆, e, S, G, r, p〉,

0 ≤ i < n, iff either Gi+1 = G[r
p
7→ e] or Gi+1 = G[r

p
7→

LogV ar], where Gi+1 = graph(Ci+1).

Proof. (⇒) We make a case distinction on expression e.
If e is a function call, a let expression, a disjunction, or a
case expression, then the claim follows by applying rule fun,
let, or, or case, respectively.

If e is a constructor call, we consider two possibilities:

• If the stack is headed by a case construct, the claim
follows by applying rule select or select-f.

• If the stack is empty, the claim follows by the applica-
tion of rule success-c.

If e is a logical variable, i.e., e = y with ∆[y] = y, we consider
the following two possibilities:

• If the stack is headed by a case construct, the claim
follows by applying rule guess or guess-f.

• If the stack is empty, the claim follows by the applica-
tion of rule success-x.

(⇐) This direction is straightforward, since new 7→-arrows
are only introduced in the current graph by the applica-
tion of rules fun, let, or, case, select, select-f, guess, guess-f,
success-c, or success-x, and in all these cases the considered
configuration is relevant according to Definition 5.1.

Now, we introduce the notion of successor derivation. This
notion will become useful to prove the correctness of succes-
sor arrows in the graph, i.e., property (2) above.

Definition 5.3 (successor derivation).
Let D : (C0 =⇒∗ Cn), n > 0, be a derivation. Let Ci =
〈∆, e, S, G, r, p〉, 0 ≤ i < n, be a relevant configuration such
that e is a function call, a let expression, a disjunction, or a
case expression. Then, Ci =⇒∗ Cj , i < j ≤ n, is a successor
subderivation of D iff

• Cj is relevant,

• stack(Ci) = stack(Cj), and

• there is no relevant configuration Ck, i < k < j, such
that stack(Ci) = stack(Ck).

Intuitively, a successor derivation represents a single reduc-
tion step (including the associated subcomputations, if any).
The following lemma states a useful property.

Lemma 5.4. Let D : (C0 =⇒∗ Cn), n > 0, be a deriva-
tion. There exists a successor subderivation

Ci = 〈∆, e, S, G, r, p〉 =⇒∗
Cj = 〈∆′

, e
′
, S

′
, G

′
, r

′
, p

′〉

0 ≤ i < j < n, in D, iff (r
p
7→
r′

e) ∈ Gj and p′ = r.

Proof. (⇒) We prove the claim by a case distinction on
the expression e.

If e = f(xm) is a function call, rule fun is applied:

〈∆, e, S, G, r, p〉 =⇒ 〈∆, ρ(e′′), S, G[r
p
7→
r′

e], r′, r〉

where f(ym) = e′′ ∈ P , ρ = {ym 7→ xm}, and r′ is a fresh
reference. If the new configuration is relevant (i.e., Ci+1 =
Cj), then the claim follows. Otherwise, only rules varcons,
varexp, and val can be applied. Since these rules do not
change the current and parent references, Cj is eventually
reached and the claim follows.

If e is a let expression or a disjunction, then the proof is
perfectly analogous to the previous case.

Finally, if e = (f)case x of {pk → ek}, rule case is applied:

〈∆, (f)case x of {pk → ek}, S, G, r, p〉
=⇒ 〈∆, x, ((f){pk → ek}, r) : S, G∗, q, r〉

where G∗ = G[r
p
7→ (f)case x of {pk → ek}] and q is a fresh

reference. Now, the successor subderivation must contain a
subcomputation of the form:

〈∆, x, ((f){pk → ek}, r) : S, G∗, q, r〉
=⇒∗ 〈∆′′, v, ((f){pk → ek}, r) : S, G′′, r′′, p′′〉

where v is a value (a constructor call or a logical vari-
able). Then, by applying one of the rules select, select-f,
guess, or guess-f, we get a new configuration of the form
〈∆∗, e∗, S, G′, r′, r〉 such that (r 7→

r′

) ∈ G′. If the new con-

figuration is already relevant, then the proof is done. Oth-
erwise, only rules varcons, varexp, and val can be applied.
Since these rules do not change the current and parent ref-
erences, Cj is eventually reached and the claim follows.

(⇐) We prove the claim by a case distinction on the expres-
sion e.

If e = f(xm) is a function call, there must be a (relevant)
configuration Ci = 〈∆, e, S, G, r, p〉 with 0 < i < n, such

that the application of rule fun introduced (r
p
7→
r′

e) in G.

If the derived configuration, 〈∆, ρ(e′), S, G[r
p
7→
r′

e], r′, r〉, is

relevant, the claim follows since

Ci =⇒ 〈∆, ρ(e′), S, G[r
p
7→
r′

e], r′, r〉

is a successor subderivation of D. Otherwise, only rules var-
cons, varexp, and val can be applied. Since these rules do not
change the current and parent references, Cj is eventually
reached and the claim follows.

If e is a let expression or a disjunction, then the proof is
perfectly analogous to the previous case.

Finally, if e = (f)case x of {pk → ek}, then there must
be a (relevant) configuration of the form

Ci = 〈∆, e, S, G, r, p〉

with 0 < i < n, such that the application of rule case intro-

duced (r
p
7→ e) in G. Now, since (r 7→

r′

) also belongs to G′,

we know that a subcomputation of the following form exists
in D:

〈∆, x, ((f){pk → ek}, r) : S, G∗, q, r〉
=⇒∗ 〈∆′′, v, ((f){pk → ek}, r) : S, G′′, r′′, p′′〉

where v is a value (a constructor call or a logical vari-
able). Then, by applying one of the rules select, select-f,
guess, or guess-f, we get a new configuration of the form
〈∆∗, e∗, S, G′, r′, r〉 such that (r 7→

r′

) ∈ G′. If the derived

configuration is relevant, the claim follows since

Ci =⇒∗ 〈∆∗
, e

∗
, S, G

′
, r

′
, r〉

is a successor subderivation of D. Otherwise, only rules var-
cons, varexp, and val can be applied. Since these rules do not
change the current and parent references, Cj is eventually
reached and the claim follows.

The following result states property (2) above: for each suc-
cessor subderivation in a computation, the semantics of Fig-
ures 4 and 5 adds a corresponding successor arrow to the
graph, and vice versa.

Proposition 5.5. Let D : (C0 =⇒∗ Cn), n > 0, be a
derivation. There exists a successor subderivation

Ci = 〈∆, e, S, G, r, p〉 =⇒∗ 〈∆′
, e

′
, S

′
, G

′
, r

′
, p

′〉 = Cj

0 ≤ i < j < n, in D, iff (r
p
7→
r′

e) ∈ graph(Cj+1) and

(r′
r
7→
q

e′) ∈ graph(Cj+1).

Proof. By Lemma 5.4, there is a successor subderivation

Ci = 〈∆, e, S, G, r, p〉 =⇒∗ 〈∆′
, e

′
, S

′
, G

′
, r

′
, p

′〉 = Cj

0 ≤ i < j < n, in D, iff (r
p
7→
r′

e) ∈ G′. Furthermore, by

Proposition 5.2, 〈∆′, e′, S′, G′, r′, p′〉 is a relevant configura-

tion iff (r′
r
7→
q

e′) ∈ graph(Cj+1), for some reference q. The

fact that no rule of the calculus removes information from
the graph concludes the proof.

So far, we have proved the correctness of successor arcs as
well as some of the parent arcs (namely, those parent arcs
which are the inverse of a successor arc). Now, we consider
property (3) above: for each argument x of a function and
constructor call, the graph includes a variable pointer x r

that points to the reference of the corresponding argument
whenever this argument is needed in the computation.

Definition 5.6 (lookup configuration).
Let (C0 =⇒∗ Cn), n > 0, be a derivation. A configu-
ration Ci, 0 ≤ i ≤ n, is a lookup configuration of D iff
control(Ci) = x and there exists no configuration Cj with
control(Cj) = x and j < i.

When a lookup configuration 〈∆, x, S, G, r, p〉 appears in a
computation, a variable pointer x r should be added to
the graph. Moreover, reference r should store the derefer-
enced value of heap variable x. We express this by a function
∆∗ which is defined as follows:

∆∗(x) =

8<: ∆∗(y) if ∆[x] = y and x 6= y

LogV ar if ∆[x] = x

∆[x] otherwise

Note that ∆∗(x) = y implies that y is a logical variable (i.e.,
∆[y] = y).

The following auxiliary lemma states a useful property:

Lemma 5.7. Let D : (C0 =⇒∗ Cn), n > 0, be a deriva-
tion. Ci = 〈∆, x, S, G, r, p〉, 0 < i < n, is a lookup configu-
ration in D iff 6 ∃r′ such that (x r′) ∈ G.

Proof. The claim follows trivially by definition of lookup
configuration.

Now, we formally state property (3) above:

Proposition 5.8.
Let D : (C0 =⇒∗ Cn), n > 0, be a derivation. There exists a
lookup configuration Ci = 〈∆, x, S, G, r, p〉, 0 < i < n, in D,

iff (x r) ∈ graph(Cj+1) and r
p
7→ ∆∗(x) ∈ graph(Cj+1),

where Cj , i ≤ j < n, is a relevant configuration and there is
no relevant configuration Ck with i < k < j.

Proof. (⇒) We consider the following possibilities.
If ∆[x] = x is a logical variable (and, thus, ∆∗(x) =

LogV ar), then there exist two possibilities:

• If Ci is a relevant configuration (i.e., the current stack
S is not headed by a variable), then Ci = Cj and one
of the following cases apply. If S is empty, the claim
follows by applying rule success-x. If S is headed by
a case expression, the claim follows by applying either
rule guess or guess-f.

• Otherwise, there is a variable on top of the stack S.
In this case, rule val applies. Since this rule does not
change neither the control nor the current and parent
references, the claim follows by applying rule val as
much as needed until we get the relevant configuration
Cj , since then the previous case applies.

If ∆[x] = c(xm) is a constructor call (and, thus, ∆∗(x) =
c(xm)), rule varcons applies:

Ci =⇒ 〈∆, c(xm), S, G 1 (x r), r, p〉

By Lemma 5.7, there is no reference r′ such that (x → r′) ∈
G. Therefore, G 1 (x r) = G[x r]. If the derived
configuration, Ci+1 is relevant (i.e., Ci+1 = Cj), then the
claim follows by Proposition 5.2. Otherwise, only rule val
can be applied. Similarly to the previous case, since this
rule does not change neither the control nor the current and
parent references, the claim follows by applying rule val as
much as needed until we get the relevant configuration Cj ,
since then the claim follows by Proposition 5.2.

If ∆[x] = e, where e is a function call, a let expression, a
disjunction, or a case expression, then rule varexp applies:

Ci =⇒ 〈∆, e, x : S, G 1 (x r), r, p〉

By Lemma 5.7, G 1 (x r) = G[x r]. Finally, since the
derived configuration Ci+1 is relevant (i.e., Ci+1 = Cj), the
claim follows by Proposition 5.2.

Otherwise, ∆[x] = y with x 6= y. In this case, rule varexp
applies:

Ci =⇒ 〈∆, y, x : S, G 1 (x r), r, p〉 = Ci+1

By Lemma 5.7, G 1 (x r) = G[x r]. Now, we prove

(r
p
7→ ∆∗(y)) ∈ Cj+1 by induction on the number l of (recur-

sive) calls to ∆∗() performed by ∆∗(y) (i.e., on the length
of the variable chain from y to ∆∗(y) in ∆):

(l = 1) Then, ∆∗(y) = ∆[y] = e. If e is a logical variable
(i.e., e = y), rule val applies:

Ci+1 =⇒ 〈∆[x 7→ y], y, S, G[x r], r, p〉 = Ci+2

If Ci+2 is a relevant configuration (i.e., Ci+2 = Cj),
the claim follows by Proposition 5.2. Otherwise, only
rule val can be applied. Since this rule does not change
neither the control nor the current and parent refer-
ences, the claim follows by applying rule val as much
as needed until we get the relevant configuration Cj ,
since then the claim follows by Proposition 5.2.

If e = c(xm) is a constructor call, rule varcons applies:

Ci+1 =⇒ 〈∆[x 7→ y], c(xm), x : S,

G[x r] 1 (y r), r, p〉 = Ci+2

and, then, rule val:

Ci+2 =⇒ 〈∆[x 7→ c(xm)], c(xm), S,

G[x r] 1 (y r), r, p〉 = Ci+3

As in the previous case, if Ci+3 is a relevant config-
uration (i.e., Ci+3 = Cj), then the claim follows by

Proposition 5.2. Otherwise, only rule val can be ap-
plied. Since this rule does not change neither the con-
trol nor the current and parent references, the claim
follows by applying rule val as much as needed until we
get the relevant configuration Cj , since then the claim
follows by Proposition 5.2.

Finally, if e is a function call, a let expression, a dis-
junction, or a case expression, rule varexp applies:

Ci+1 =⇒ 〈∆, e, x : S, G[x r], r, p〉 = Ci+2

Since Ci+2 is a relevant configuration (i.e., Ci+2 = Cj),
then the claim follows by Proposition 5.2.

(l > 1) In this case, ∆∗(y) = ∆∗(z) with ∆(y) = z and
y 6= z. Therefore, rule varexp applies:

Ci+1 =⇒ 〈∆[x 7→ y, y 7→ z], z, y : x : S,

G[x r] 1 (y r), r, p〉

Finally, since the number of (recursive) calls to ∆∗() in
∆∗(z) is strictly lesser than in ∆∗(y), the claim follows
by induction.

(⇐) This direction can be proved easily. If (x r) ∈
graph(Cj+1), then there must be a configuration, Ci, of the
form 〈∆, x, S, G, r, p〉, 0 < i < n, in D, such that there is
no r′ with (x r′) ∈ G. Therefore, Ci is a lookup config-

uration. Furthermore, since (r
p
7→ ∆∗(x)) ∈ graph(Cj+1),

there must be a relevant configuration, Cj , of the form
〈∆′, ∆∗(x), S′, G′, r, p〉, and the claim follows.

Finally, we consider the last property, i.e., we prove that,
whenever a case expression demands the evaluation of its
argument, a parent arrow is added to the graph from such
an argument to the case expression that demanded its eval-
uation (and vice versa).

Proposition 5.9. Let D : (C0 =⇒∗ Cn), n > 0, be a
derivation. There exists a configuration

Ci = 〈∆, (f)case x of {pk → ek}, S, G, r, p〉, 0 < i < n

iff (r 7→ (f)case x of {pk → ek}) ∈ graph(Ci+1) and (q
r
7→

∆∗(x)) ∈ graph(Cj+1), where Cj, i < j < n, is a relevant
configuration and there is no relevant configuration Ck with
i < k < j.

Proof. By Proposition 5.2, there exists a (relevant) con-
figuration

Ci = 〈∆, (f)case x of {pk → ek}, S, G, r, p〉, 0 < i < n

iff (r 7→ (f)case x of {pk → ek}) ∈ graph(Ci+1). Moreover,
by applying rule case, we get the following reduction step:

Ci =⇒ 〈∆, x, ((f){pk → ek}, r) : S,

G[r
p
7→ (f)case x of {pk → ek}, q, r〉 = Ci+1

If Ci+1 is a lookup configuration, then the claim follows
by Proposition 5.8. Otherwise, only rules varcons, guess,
guess-f, or success-x can be applied, and the claim follows
straightforwardly (with Ci+1 = Cj).

There exists an additional situation in which a parent arrow
is added to the graph: when a logical variable is bound
by a flexible case expression. The next lemma proves the
correctness of such a case:

Proposition 5.10. Let D : (C0 =⇒∗ Cn), n > 0, be a
derivation. There exists a configuration Ci = 〈∆[y 7→ y], y,
(f{pk → ek}, r

′) : S, G, r, p〉, 0 < i < n, iff

• (r′ 7→ fcase x of {pk → ek}) ∈ G,

• (r 7→
q

LogV ar) ∈ graph(Ci+1), and

• (q
r′

7→ ρ(pi)) ∈ graph(Ci+1).

where i ∈ {1, . . . , k}, pi = c(xn), ρ = {xn → yn}, and yn

are fresh.

Proof. In order to have an element (f{pk → ek}, r
′) on

top of the stack, a configuration with fcase x of {pk → ek}
in the control should be previously reduced. By Proposi-
tion 5.2, there exists a configuration

Cj = 〈Γ, fcase x of {pk → ek}, S, G
′
, r

′
, p

′〉

in D, with 0 < j < i, iff (r′ 7→ fcase x of {pk → ek}) ∈ G.
Now, the claim follows trivially by applying rule guess:

Ci =⇒ 〈∆[y 7→ ρ(pi), yn 7→ yn], ρ(ei), S,

G[r 7→
q

LogV ar, q
r′

7→ ρ(pi)], s, r
′〉 = Ci+1

6. IMPLEMENTATION ISSUES
We have prototypically implemented the presented graph

construction by extending an interpreter for flat programs.
In contrast to the semantics presented in this paper, our in-
terpreter uses a fixed search strategy (e.g., depth-first search
or breadth-first search) to deal with non-determinism simi-
larly to [1]. As a consequence, we do not generate a graph
for each non-deterministic computation. Instead, we gener-
ate a single graph containing the graphs of all evaluations
executed by the search strategy, in the following called the
unified graph.

In order to distinguish the different evaluations in the uni-
fied graph, we add path information to every node. Initially,
the computation starts with the empty path. Whenever a
branching is performed by rules or and guess, the subsequent
computations are distinguished by extended paths. As an
example, consider the following flat program which is similar
to Example 3.1 but without sharing:

Example 6.1.

and x y = fcase x of { False -> False;

True -> y }
choose x y = x or y

main = and (choose False True)

(choose False True)

The unified graph for this example is presented in Figure 8.
If a node is computed on a non-empty path, then the path (a
list of numbers) is added to the label. The paths grow to the
left; hence, the paths [1,2] and [2,2] are extensions of path
[2]. This unified graph represents three graphs, related to
the paths [1], [1,2], and [2,2]. These three graphs can be
computed from the unified graph by considering only nodes
with a path suffix. For instance, the node labeled with main

belongs to all graphs, the node labeled with [2]:choose

belongs to the graphs [1,2] and [2,2] and the node labeled
with [1,2]:False only belongs to the graph [1,2].

main and fcase

choose [2]:choose

[1]:False

or

[1]:False [2]:True

[2]:or

[1,2]:False [2,2]:True

Figure 8: Unified Graph of Example 6.1

Generating a unified graph instead of a separate graph for
each computation has two advantages. Firstly, large parts
of the different graphs are identical (e.g., all nodes labeled
with the empty path belong to all graphs). Hence, storing
a unified graph needs less space. Secondly, in the viewer
tool, it is not sufficient to present only a single graph to
detect errors related to non-determinism. Rather, different
results of a computation have to be presented to the pro-
grammer. Furthermore, the information about structures
that are identical for two non-deterministic branches can be
of great help for debugging, too. It is much easier to obtain
these results in the unified graph.

We have also prototypically implemented viewing tools
for the constructed redex trails. One of these is the text-
based view which was briefly sketched in Section 3. We have
also implemented a web-based view providing hyperlinks to
navigate through the presented information.

Bringing redex trailing to the world of functional logic pro-
gramming also entailed special requirements for the viewer.
In order to enable the search for bugs in programs using log-
ical language features, we designed a new view on the redex
trail. This view is independent from the ones described in
[19] and will be described in detail in future works.

7. RELATED WORK
The necessity for presenting the execution trace for debug-

ging in a way different from the concrete execution is known
for a long time in lazy functional languages [14]. This is
due to the fact that the control flow of a demand-driven
evaluation is very different from the program text. Thus,
in order to relate the concrete program execution to the in-
tended (declarative) semantics of a program, it is necessary
to provide different views of the concrete sequence of exe-
cution steps. These are usually generated by reconstructing
appropriate views from a stored execution trace. For in-
stance, Freja [15] shows function calls with fully evaluated
arguments and results (at least as far as the computation
has demanded their evaluation) in order to apply algorith-
mic debugging techniques from logic programming [17]. A
similar view of function calls is provided in Hat [18] that
presents a computation “backwards” from the results to the
initial calls. Furthermore, Hood [7] supports the observation
of data structures and functional objects at distinguished
points in a program specified by the programmer. All these
approaches stores information about the concrete program
execution before presenting these different views to the pro-
grammer. [19] presents a “unified” trace model by stor-
ing appropriate execution trace information from which the
views of Freja, Hat, or Hood can be generated.

All these proposed techniques are related to functional

languages since logic languages are usually based on a strict
evaluation strategy that makes it easier to relate concrete
trace results with the program text [4]. Thus, the extension
of these techniques to modern functional logic languages
based on non-strict evaluation (i.e., the addition of non-
determinism and logical variables) is an open problem ad-
dressed in this paper. A recent exception is [3] where an ex-
tension of Hood to functional logic programs is presented but
without a formal justification. Chitil [5] presents a first at-
tempt to formally justify trace-oriented debugging methods
for non-strict languages by augmenting a small-step opera-
tional semantics. However, [5] considers purely functional
languages and does not provide correctness results. There-
fore, our work can be considered as the first approach to
formally justify trace-oriented debugging methods for non-
strict functional (logic) languages.

8. CONCLUSIONS AND FUTURE WORK
In this work we have presented an instrumented opera-

tional semantics to trace functional logic computations. In
addition to the normal output of the computed values and
bindings, this semantics yields a data structure representing
a redex trail. This redex trail is very useful for debugging
purposes. The main contribution of this work is twofold: (1)
the extension of redex trailing for functional logic languages
and (2) the first known formal definition which allows formal
reasoning about the tracing process. Using this definition
we were able to formally proof essential correctness proper-
ties of the computed redex trails. In consequence, this work
provides a first foundation for techniques formerly used in-
tuitively by stating program transformations. Furthermore,
we have described prototypical implementations of both the
operational semantics and viewers for the redex trails and
discussed some issues of these implementations.

There are several points for future work. As this paper is
mainly concerned with foundations, a detailed description
of applications and usability of this approach is desirable.
Moreover, the current implementation of the trail construc-
tion is based on an interpreter of the operational semantics.
In order to make the approach useful for larger programs,
we want to construct the trail by transforming the original
program. Work on such a program transformation is already
quite advanced and further improvements on the efficiency
of the tools are planned. Finally, the debugging tools will
hopefully be soon in a state of practicality. We will then
encourage a broader usage of these tools and expect some
feedback which enables further improvement of the different
views on the redex trails.

Acknowledgments
We would like to thank Santiago Escobar for many helpful
comments and discussions on an earlier version of this paper.

9. REFERENCES
[1] E. Albert, M. Hanus, F. Huch, J. Oliver, and

G. Vidal. Operational Semantics for Declarative
Multi-Paradigm Languages. To appear in Journal of
Symbolic Computation, 2004.

[2] S. Antoy. Constructor-based Conditional Narrowing.
In Proc. of the 3rd Int’l Conference on Principles and
Practice of Declarative Programming (PPDP 2001),
pages 199–206. ACM Press, 2001.

[3] B. Braßel, O. Chitil, M. Hanus, and F. Huch.
Observing Functional Logic Computations. In Proc. of
the Sixth Int’l Symposium on Practical Aspects of
Declarative Languages (PADL’04), pages 193–208.
Springer LNCS 3057, 2004.

[4] L. Byrd. Understanding the control flow of prolog
programs. In Proc. of the Workshop on Logic
Programming, Debrecen, 1980.

[5] O. Chitil. A Semantics for Tracing. In 13th Int’l
Workshop on Implementation of Functional Languages
(IFL 2001), pages 249–254. Ericsson CSL, 2001.

[6] R. Echahed and J. Janodet. Admissible Graph
Rewriting and Narrowing. In Proc. of the 1998 Joint
Int’l Conf. and Symp. on Logic Programming, pages
325–340. MIT Press, 1998.

[7] A. Gill. Debugging Haskell by Observing Intermediate
Data Structures. In Proc. of the 4th Haskell
Workshop. University of Nottingham, 2000.

[8] J.C. González-Moreno, M.T. Hortalá-González, F.J.
López-Fraguas, and M. Rodŕıguez-Artalejo. An
Approach to Declarative Programming based on a
Rewriting Logic. Journal of Logic Programming,
40:47–87, 1999.

[9] M. Hanus. A Unified Computation Model for
Functional and Logic Programming. In Proc. of the
24th ACM Symp. on Principles of Programming
Languages (POPL’97), pages 80–93. ACM, 1997.

[10] M. Hanus and C. Prehofer. Higher-Order Narrowing
with Definitional Trees. Journal of Functional
Programming, 9(1):33–75, 1999.

[11] M. Hanus (ed.). Curry: An Integrated Functional
Logic Language. Available at:
http://www.informatik.uni-kiel.de/~curry/.

[12] J. Launchbury. A Natural Semantics for Lazy
Evaluation. In Proc. of the ACM Symp. on Principles
of Programming Languages (POPL’93), pages
144–154. ACM Press, 1993.

[13] F. López-Fraguas and J. Sánchez-Hernández. TOY: A
Multiparadigm Declarative System. In Proc. of the
Int’l Conf. on Rewriting Techniques and Applications
(RTA’99), pages 244–247. Springer LNCS 1631, 1999.

[14] H. Nilsson and P. Fritzson. Algorithmic debugging for
lazy functional languages. Journal of Functional
Programming, 4(3):337–370, 1994.

[15] H. Nilsson and J. Sparud. The Evaluation Dependence
Tree as a Basis for Lazy Functional Debugging.
Automated Software Engineering, 4(2):121–150, 1997.

[16] S. Peyton Jones, editor. Haskell 98 Language and
Libraries : The Revised Report. Cambridge University
Press, 2003.

[17] E.Y. Shapiro. Algorithmic Programming Debugging.
MIT Press, 1983.

[18] J. Sparud and C. Runciman. Tracing Lazy Functional
Computations Using Redex Trails. In Proc. of the 9th
Int’l Symp. on Programming Languages,
Implementations, Logics and Programs (PLILP’97),
pages 291–308. Springer LNCS 1292, 1997.

[19] M. Wallace, O. Chitil, T. Brehm, and C. Runciman.
Multiple-View Tracing for Haskell: a New Hat. In
Proc. of the 2001 ACM SIGPLAN Haskell Workshop.
Universiteit Utrecht UU-CS-2001-23, 2001.

