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Abstract. Partial evaluation aims at improving programs by special-
izing them w.r.t. part of their input data. In general, however, the ef-
fectiveness of the partial evaluation process is hard to measure, even a
posteriori. Recent approaches have introduced experimental (often com-
putationally expensive) frameworks for this purpose.

In this paper, we present an alternative, symbolic approach for predicting
the effectiveness of partial evaluation by combining a trace analysis with
a termination analysis. The termination analysis—namely, a size-change
analysis—is used to determine which procedures are potentially remov-
able by partial evaluation (i.e., can be fully unfolded at specialization
time). Then, the trace analysis helps us to put this information into con-
text by producing a compact representation of the call sequences of the
program. By inspecting the output of the combined analysis, the user
may determine the impact of a partial evaluation before it is performed.

1 Introduction

The main goal of partial evaluation [18] is program specialization. Essentially,
given a program and part of its input data—the so called static data—a partial
evaluator returns a new, residual program which is specialized for the given
data. In the optimal case, all operations that depend only on the static data are
performed once and for all during partial evaluation. An appropriate residual
program for executing the remaining computations—those that depend on the
so called dynamic data—is thus the output of the partial evaluator.

Among the different techniques for program specialization, partial evalua-
tion is likely the one which has achieved a higher level of automation. However,
despite the fact that the main goal of partial evaluation is improving program ef-
ficiency (i.e., producing faster programs), there are very few approaches devoted
to formally analyze the effects of partial evaluation, either a priori (prediction)
or a posteriori. Recent approaches (e.g., [11, 27]) have considered experimental
frameworks for estimating the best division (roughly speaking, a classification
of program parameters into static or dynamic), so that the optimal choice is
followed when specializing the source program. The main drawback of these
approaches, however, is that they are often computationally expensive since a
number of testing partial evaluations (though for simpler test cases) should be
made in order to determine the best division.
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Fig. 1. Graphical representations of call sequences

In this paper, we present an alternative, symbolic approach for predicting
the potential effects of a partial evaluation (which is, in principle, computation-
ally less expensive). Consider, e.g., the following simple program for adding the
elements of a list using an accumulating parameter:

sl([ ], N, N). add(0, Y, Y ).
sl([X|R], N, S) ← add(N,X,M), add(s(X), Y, s(Z)) ← add(X, Y, Z).

sl2 (R,M, S). sl2 (R,M, S) ← sl(R,M, S).

where natural numbers are built from 0 and s(·).
Let us now analyze what could be the effects of partially evaluating this

program. First, given a flat call of the form sl(A,B, C), the SLD search space
(using Prolog’s leftmost computation rule) has the shape depicted in Fig. 1 (a).

Here, one can observe—just by looking at this representation—that the call
to sl2 is not really needed: it acts simply as an intermediate call and could be
safely removed by unfolding. The resulting graph is depicted in Fig. 1 (b).

Now, let us assume that the second parameter, the accumulating parameter,
is static and thus known at partial evaluation time. Therefore, all calls to add
have a static first argument and, hence, the number of recursive calls is bounded
by the value of this argument. As a consequence, all calls to add can be fully
unfolded at partial evaluation time, so that we get the graph of Fig. 1 (c). If we
compare graphs (a) and (c), it is easy to conclude that graph (c) represents a
significantly less expensive computation than graph (a) since every iteration of
the loop for sl has changed from 1 + (n + 1) + 1 steps (i.e., a call to sl , n + 1
calls to add , where n depends on its first argument, and a call to sl2 ) to simply
1 step. If this loop is traversed many times (e.g., when the first argument of sl
is a large list), then the improvement achieved would be quite significant.

Although the graphical representation may be more intuitive for the user,
other textual representations could be more amenable to automation. For this
purpose, we also introduce the use of regular expressions. The following table
shows the regular expression that represents the call traces of the original pro-
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gram (first row labeled with none), together with the regular expressions asso-
ciated to partial evaluations using different divisions:1

division regular expression
none (sl add* add sl2)* sl Fig. 1 (a)
sl(d, d, d) (sl add* add ___)* sl Fig. 1 (b)
sl(s, d, d) (__ add* add ___)* __
sl(d, s, d) (sl ___* ___ ___)* sl Fig. 1 (c)
sl(s, s, d) (__ ___* ___ ___)* __

Here, as it is common practice, we use p∗ to denote zero or more occurrences of
p. Observe the equivalence between the regular expressions of rows 1, 2 and 4
and the graphs depicted in Fig. 1. Intuitively speaking, the meaning of each row
is as follows:

– For division sl(d, d, d), only intermediate calls are removed by partial evalu-
ation.

– For division sl(s, d, d), the initial call to sl can be fully unfolded, but a
number of calls to add remains in the partially evaluated program. Actually,
this is not a good specialization since we are just moving a constant number
of steps from run time to partial evaluation time.

– For division sl(d, s, d), every call to add can be fully unfolded but the outer
loop for sl remains in the partially evaluated program. A significant speedup
can be achieved here for large input lists as discussed above.

– Finally, for division sl(s, s, d), the call to sl can be fully unfolded. As in the
second case above, this is not a good specialization since only a constant
number of steps would be saved.

It is the aim of this work to present a symbolic framework to formally discuss
the effects achieved by partial evaluation.

Constributions. Our first contribution is a systematic method to approximate
the call traces of a given program. Basically, given a logic program, we first
construct a context-free grammar that safely approximates the call sequences of
the program. For instance, for procedure add above we get

add → add
add → add add

where add is a non-terminal associated to predicate add (which is used as a
terminal of the grammar). In this case, the grammar is already regular and,
thus, a regular expression (add∗ add) can be obtained. When it is not regular,
we apply the transformation of [24] to get a regular approximation while keeping
the structure of the original grammar as far as possible.

1 For the moment, divisions are just expressed as atoms with s (static) or d (dynamic)
arguments.
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Our second contribution is a method for determining how a given division
may affect the program loops. For this purpose, we consider the size-change
analysis of [31]. The relevance of this analysis (in contrast to other termination
analysis) is that it is independent of the computation rule (which may allow much
faster partial evaluation, as shown in [20] in the context of the partial evaluator
Logen [19]). This is a requirement in our setting since partial evaluation often
considers liberal selection policies that depend on the available information (e.g.,
only calls which are instantiated enough to ensure finite unfolding are unfolded).

Once size-change analysis has identified the (potential) loops of the program,
we use the information provided by a division in order to determine which loops
can be safely unfolded. As a consequence, the output of the trace analysis (e.g., a
regular expression denoting the possible sequences of calls) is modified in order to
reflect the elimination of these loops. In this paper, we focus on providing simple
and useful information for the user in order to analyze the effects of different
partial evaluations. Nonetheless, an automated analysis of the associated regular
expressions is also possible, though it is outside the scope of this paper.

The paper is organized as follows. After introducing some preliminaries in the
next section, we present our stepwise transformation for approximating the call
traces of logic programs in Sect. 3. Then, in Sect. 4, we recall the fundamentals
of size-change analysis and use the output of this analysis for estimating the
effects of partial evaluation w.r.t. a given division; we also present some details
of a prototype implemention as well as a number of experimental results. Finally,
Sect. 5 discusses some related work and Sect. 6 concludes and presents several
possibilities for future work.

2 The Language

We consider a first-order language with a fixed vocabulary of predicate symbols,
function symbols, and variables denoted by Π, F and V, respectively. We let
T (F ,V) denote the set of terms constructed using symbols from F and variables
from V. An atom has the form p(t1, . . . , tn) with p/n ∈ Π and ti ∈ T (F ,V) for
i = 1, . . . , n. A query is a finite sequence of atoms 〈A1, . . . , An〉, where the
empty query is denoted by true. A clause has the form H ← B1, . . . , Bn where
H,B1, . . . , Bn, n > 0, are atoms (i.e., we only consider definite programs). A
logic program is a finite sequence of clauses. Var(s) denotes the set of variables
in the syntactic object s (i.e., s can be either a term, an atom, a query, or a
clause). A syntactic object s is ground if Var(s) = ∅.

Substitutions and their operations are defined as usual. In particular, the
set Dom(σ) = {x ∈ V | σ(x) 6= x} is called the domain of a substitution σ. A
syntactic object s1 is more general than a syntactic object s2, denoted s1 6 s2,
if there exists a substitution θ such that s2 = s1θ. The most general unifier of
two syntactic objects, s1 and s2, denoted by mgu(s1, s2), is a unifier of s1 and
s2 which is more general than any other unifier of s1 and s2.

Computations in logic programming are formalized by means of SLD res-
olution. The notion of computation rule R is used to select an atom within
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a query for its evaluation. Given a program P , a query Q = 〈A1, . . . , An〉,
and a computation rule R, we say that Q ;P,R,σ Q′ is an SLD resolution
step for Q with P and R if R(Q) = Ai, 1 6 i 6 n, is the selected atom,
H ← B1, . . . , Bm is a renamed apart clause of P , σ = mgu(A,H), and Q′ =
(〈A1, . . . , Ai−1, B1, . . . , Bm, Ai+1, . . . , An〉)σ; we often omit P , R and/or σ in
the notation of an SLD resolution step when they are clear from the context.
An SLD derivation is a (finite or infinite) sequence of SLD resolution steps.
We often use Q0 ;∗

θ Qn as a shorthand for Q0 ;θ1 Q1 ;θ2 . . . ;θn Qn with
θ = θ1◦· · ·◦θn (where θ = {} if n = 0). An SLD derivation Q ;∗

θ Q′ is successful
when Q′ = true; in this case, we say that θ is the computed answer substitution.
SLD derivations are represented by a (possibly infinite) finitely branching tree.

3 Trace Analysis for Logic Programs

In this section, we aim at capturing the shape of a computation by producing a
finite representation of all possible sequences of predicate calls.

For this purpose, we introduce a stepwise method that starts with a context-
free grammar (CFG) that approximates the call sequences of a logic program
(LP), which is then approximated by a strongly regular grammar (SRG), if
needed, and transformed into a finite automaton (FA) whose accepted language
can be represented by means of a regular expression (ER). Graphically:�� ��LP ⇒ CFG ⇒ SRG ⇒ FA ⇒ RE

The next sections formalize this process.

3.1 From Logic Programs to Context-Free Grammars

Let us first formalize our notion of call trace. For the sake of clarity, we assume
in the following that programs do not contain occurrences of the same predicate
name with different arities.2

Furthermore, we consider a fixed computation rule for call traces, namely
Prolog’s leftmost computation rule, which we denote by Rleft .3 In what follows,
we often label SLD resolution steps with the predicate symbol of the selected
atom, i.e., we write Q0

p0
; Q1

p1
; . . . with pred(Rleft(Qi)) = pi, i ≥ 0, where

pred(A) returns the predicate symbol of atom A.

Definition 1 (call trace). Let P be a program and Q0 a query. We say that
τ = p0 p1 . . . pn−1 ∈ Π∗, n ≥ 1, is a call trace for Q0 with P iff there exists a
successful SLD derivation Q0

p0
; Q1

p1
; . . .

pn−1
; Qn.

2 This is not a real restriction and, indeed, it is not required in the implemented tool
(where predicate names are simply suffixed with their arity).

3 Note that we assume Rleft only at run time, but allow arbitrary computation rules
at partial evaluation time.
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The first step of our trace analysis consists in producing a context-free gram-
mar (CFG) associated to the considered program. A CFG G is a tuple G =
〈Σ,N,R, S〉, where Σ and N are two finite disjoint set of terminals and non-
terminals, respectively, S ∈ N is the start symbol, and R is a finite set of rules.
Each rule has the form A→ α with A ∈ N and α ∈ V ∗, where V denotes Σ∪N .
The relation → on N × V ∗ is extended to a relation on V ∗ × V ∗ in the usual
way. The transitive and reflexive closure of→ is denoted by→∗. The context-free
language generated by G is given by L(G) = {w | Σ∗ | S →∗ w}. See, e.g., [17]
for more details on CFGs.

In the following, given a predicate symbol p ∈ Π, we denote by p 6∈ Π a fresh
symbol representing the non-terminal associated to p. Furthermore, we denote
by pred(A) the non-terminal associated to the predicate symbol of atom A, i.e.,
pred(A) = p if A = p(t1, . . . , tn). Also, we let Π denote the set {p | p ∈ Π}
of non-terminals associated to predicate symbols. In contrast, we directly use
predicate symbols from Π as terminals.

We let start be a fresh symbol not in Π ∪ Π which we use as a generic
start symbol for CFGs. Given a program and a predicate symbol, we construct
an associated CFG, called trace CFG, as follows:

Definition 2 (trace CFG, cfgP
q ). Let P be a program and q ∈ Π a predicate

symbol with associated non-terminal q. The associated trace CFG is cfgP
q =

〈Π,Π ∪ {start}, R, start〉, where the set of rules R is defined as follows:

{start→ q}
∪

{pred(A0)→ pred(A0)pred(B1) . . .pred(Bn) | A0 ← B1, . . . , Bn ∈ P, n ≥ 0}

Roughly speaking, the trace CFG associated to a logic program mimics the
execution of the original program

– by replacing queries (sequences of atoms) by sequences of non-terminals and
– by producing a terminal with the predicate symbol of the selected atom at

each SLD-resolution step.

Clearly, the trace CFG may produce call traces that are not possible in the
associated logic program because the “propositional” approximation that forms
the basis of trace CFGs clearly involves a loss of accuracy (consider, e.g., that
not all atoms with the same predicate symbol unify).

As a counterpart, the generation of the trace CFG can be done very efficiently
since only a single pass over the associated logic program is required.
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Example 1. Consider the following program P which defines a procedure to in-
crease all elements of a list by a given value:

(c1) incList([ ], I, [ ]).
(c2) incList([X|R], I, L)← iList(X, R, I, L).

(c3) iList(X, R, I, [XI|RI])← nat(I), add(I,X,XI), incList(R, I,RI).

(c4) nat(0).
(c5) nat(s(X))← nat(X).

(c6) add(0, Y, Y ).
(c7) add(s(X), Y, s(Z))← add(X, Y, Z).

where natural numbers are built from 0 and s(·). The associated trace CFG,
cfgP

incList, is given by

〈{incList , iList ,nat , add}, {start, incList, iList,nat,add}, R, start〉

where the set of rules R is as follows:

start→ incList nat→ nat
incList→ incList nat→ nat nat
incList→ incList iList add→ add

iList→ iList nat add incList add→ add add

Our next result states that cfgP
q is indeed a correct approximation of the call

traces for P w.r.t. the leftmost computation rule Rleft .

Theorem 1. Let P be a program and Q0 = 〈A1, A2, . . . , Am〉 a query with
pred(Ai) = ai for all i = 1, . . . ,m. Let cfgP

q be the trace CFG associated
to P for some predicate symbol q ∈ Π. If τ is a call trace for Q0 with P , then
there exists a sequence a1 . . .am →∗ τ in cfgP

q .

Proof. We prove the claim by induction on the length n of the SLD derivation
that produced the call trace τ .

Base case n = 1. Then, Q0 = 〈A1〉 is an atomic query and, moreover, it is

solved using a fact of P , i.e., Q0 = 〈A1〉
pred(Ai)

; Q1 = true using some clause
H ← of P . By definition of cfgP

q , there is a rule pred(A1)→ pred(A1) in cfgP
q

(no matter the value of q). Therefore, the sequence pred(A1) → pred(A1) can
be done in cfgP

q and the claim follows.
Inductive case n > 1. Then, there exists a successful SLD derivation Q0

q0
;

Q1
q1
; . . .

qn−1
; Qn with τ = q0 q1 . . . qn−1 and q0 = pred(A1) = a1. Assume

that the first SLD resolution step is performed with clause H ← B1, . . . , Bk,
k ≥ 0, so that Q1 = 〈B1σ1, . . . , Bkσ1, A2σ2, . . . , Anσ1〉 and σ1 = mgu(H,A1).
Therefore, there exists a rule of the form pred(H)→ pred(H)b1 . . .bk in cfgP

q ,
with pred(Bi) = bi for all i = 1, . . . , k. Since mgu(H,A1) 6= fail , we have
both pred(H) = pred(A1) = a1 and pred(H) = pred(A1) = a1. Hence the
sequence a1 a2 . . .an → a1 b1 . . .bk a2 . . .an can be performed in cfgP

q using
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rule a1 → a1 b1 . . .bk. Now, consider the SLD derivation Q1 ; . . . ; Qn

with associated call trace τ ′. By the inductive hypothesis, we have that the se-
quence pred(B1σ1) . . .pred(Bkσ1)pred(A2σ2) . . .pred(Anσ1) →∗ τ ′ can be
performed with the rules of cfgP

q . Finally, since pred(A) = pred(Aσ) and
pred(A) = pred(Aσ) for all atom A and substitution σ, the claim follows
from a1 a2 . . .an → a1 b1 . . .bk a2 . . .an and b1 . . .bk a2 . . .an →∗ τ ′.

The next corollary is an straightforward consequence of Theorem 1:

Corollary 1. Let P be a program and Q0 = 〈q(t1, . . . , tn)〉 an atomic query. Let
Ω be the (possibly infinite) set of call traces for Q0 with P . Then Ω ⊆ L(cfgP

q ).

3.2 Approximating Trace CFGs

Unfortunately, trace CFGs do not always allow us to produce a simple and
compact representation of the call traces of a program (e.g., when the associated
languages are not regular). In this section, we use the transformation from [24]
to approximate a trace CFG with a strongly regular grammar (SRG).4 The
relevance of SRGs is that they can be mapped to equivalent finite-state automata
using an efficient algorithm. Moreover, the transformation of [24] guarantees that
the result remains readable and mainly preserves the structure of the original
CFG.

Given a CFG, the first step of the transformation consists in computing the
sets of mutually recursive non-terminals. This can be done in linear time in the
size of the CFG by, e.g., computing the strongly connected components of the
graph of the grammar.5

A grammar is called left-linear if every rule has either the form

A→ t or A→ t B

where t is a finite sequence of terminals and A,B are non-terminals. The follow-
ing definition is slightly adapted from [24] to the case of trace CFGs:

Definition 3 (trace SRG, srgP
q ). Let P be a program, q ∈ Π a predicate

symbol, and cfgP
q = 〈Π,Π ∪ start, R, start〉 the trace CFG for P and q. The

associated trace SRG, in symbols srgP
q , is obtained from cfgP

q as follows:

– First, we compute the set of mutually recursive non-terminals of cfgP
q .

– Then, for each set M of mutually recursive non-terminals such that the rules
defining these non-terminals are not all left-linear w.r.t. the non-terminals
of M ,6 we apply a grammar transformation as follows:

4 SRGs coincide with the class of grammars without self-embedding [8].
5 The graph of a grammar contains one node for each non-terminal and an edge from

node A to node B if non-terminal B appears in the right-hand side of a rule with
left-hand side A.

6 This condition relaxes the standard notion of left-linear grammar by considering
non-terminals from (Π \M) as terminals.
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1. For each non-terminal A ∈M , we introduce a fresh non-terminal A′ and
add the following rule to the grammar:7

A′ → ε

2. For each non-terminal A ∈M and each rule

A→ t0 B1 t1 B2 t2 . . . Bm tm

with m ≥ 0, B1, . . . , Bm ∈ M , t0, . . . , tm ∈ (Π ∪ (Π \M))∗, we replace
this rule by the following set of rules:

A → t0 B1

B′
1 → t1 B1

B′
2 → t2 B3

. . .
B′

m−1 → tm1 Bm

B′
m → tm A′

(Note that this set reduces to A→ t0 A′ when m = 0.)
– Finally, we let srgP

q = 〈Π,Π ∪N ∪start, R′, start〉, where R′ is the set of
rules that results from R by applying the process above and N are the fresh
non-terminals added during this process.

According to [24], the transformed grammar srgP
q is strongly regular and can

be compiled into a finite automaton in linear time by existing algorithms. Fur-
thermore, the language generated by the transformed grammar is a superset of
that of the original grammar [24], i.e., L(srgP

q ) ⊇ L(cfgP
q ) for all program P

and predicate symbol q, which means (by Corollary 1) that srgP
q is a complete

approximation of all call traces for P .

Example 2. Consider the cfgP
q of Example 1. The sets of mutually recursive

non-terminals are
{{incList, iList}, {nat}, {add}}

Since the rules for nat and add are left-linear, we focus on the set M =
{incList, iList}. Here, the only potentially non-linear rule is

iList→ iList nat add incList

However, since nat,add 6∈ M , this rule is considered left-linear w.r.t. M and
needs not be replaced. Therefore, in this case, we have cfgP

incList = srgP
incList .

Example 3. Consider the following program P defining multiplication and addi-
tion on natural numbers:

mult(0, Y, 0).
mult(s(X), Y, Z)← mult(X, Y, Z1), add(Z1, Y, Z).

add(0, Y, Y ).
add(s(X), Y, s(Z))← add(X, Y, Z).

7 We denote by ε the empty sequence.
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The trace grammar cfgP
mult contains the following rules:

start→ mult mult→ mult add→ add
mult→ mult mult add add→ add add

The sets of mutually recursive non-terminals are {{mult}, {add}}. While the
rules for add are clearly left-linear, the second rule of mult is not left-linear
because, even if add is treated as a terminal, it appears to the right of the
non-terminal mult. Here, srgP

mult will contain the following set of rules:

start→ mult mult → mult mult′ add→ add
mult′ → ε mult → mult mult add→ add add

mult′ → add mult′

3.3 A Compact Representation for Call Traces

Once we have a SRG that safely approximates the call traces of a program, there
are several possibilities for representing the language generated by this SRG in
a compact and intuitive way. Here, we consider the generation of a finite-state
automaton (FA) that accepts the language generated by the SRG as well as a
regular expression (RE) that represents this language.

Trace Finite Automata. A finite-state automaton (FA) is specified by a tuple
〈Q,Σ, δ, s0, F 〉, where Q is a finite set of states, Σ is an input alphabet, δ ⊆
Q×Σ ×Q is a (finite) set of transitions, s0 ∈ Q is the start state and F ⊆ Q is
a set of final states. For constructing a finite automaton FA(G) from a SRG G,
we follow the classical approach from [1] (though more refined methods exist,
see, e.g., [26, 25]). Intuitively speaking, we proceed as follows:

– There is a start state in the FA associated to the start symbol of the SRG.
– Then, for each reduction w → w′ using a rule A→ t B of the SRG, we have

a transition (s, α, s′) in the FA. States s, s′ are associated with the sequence
of non-terminals in w,w′ (so that if the same sequence occurs more than
once, the same state is used). The character α is set to the sequence t in the
applied rule (see [1] for a detailed description).

The next example illustrates the construction of a FA from a SRG:

Example 4. Consider the CFG cfgP
incList of Example 1 (which, as shown in

Example 2, is already a SRG). The associated FA is

FA(cfgP
incList) = 〈Q, {incList , iList ,nat , add , ε}, δ, s0, {s2}〉

where

Q = { s0, s1, s2, s3, s4, s5}
δ = { (s0, ε, s1), (s1, incList , s2), (s1, incList , s3), (s3, iList , s4),

(s4,nat , s5), (s4,nat , s4), (s5, add , s1), (s5, add , s5) }

The FA is graphically shown in the leftmost, topmost corner of Fig. 2, where the
final state s2 is denoted with a double circle.
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Fig. 2. Graphical representation of FA(cfgP
incList) and state elimination sequence

Trace Regular Expressions Although not so well studied as the construc-
tion of a FA from a regular expression (RE), there exists several methods for
computing a RE that denotes the language accepted by a FA. In this work, we
consider a method called state elimination [7, 32]: given a FA, we keep removing
states—except for the start and final states—while preserving the transition in-
formation until there are no more states to eliminate. Once only transitions from
the initial to the final states remain, say r1, . . . , rn, the RE (r1 + . . . + rn) will
denote the language accepted by the FA. Here, as it is common practice, we use
p∗ to denote zero or more occurrences of p and (p+q) to denote a choice between
p and q. Note that during the state elimination process we label transitions with
REs rather than characters (formally, they are expression automata [7, 15]).

Basically, given a FA A = 〈Q,Σ, δ, s0, F 〉, the state elimination of state
s ∈ Q \ {{s0} ∪ F} proceeds as follows:

– for each pair of transitions (si, αi, s) and (s, αj , sj) in δ, we produce a new
transition (si, αi αj , sj);

– if there exists a self-looping transition (s, α, s) in δ, then the new transition
is (si, αi α∗ αj , sj) instead;

– if there is already a transition (si, αij , sj) in δ, then both the old and the
new transitions are merged to (si, (αi α∗ αj) + αij , sj);

– finally, we remove the state s and all transitions ( , , s) and (s, , ) from δ.
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Different REs can be obtained depending on the order in which states are elim-
inated. Clearly, the choice of the next state to be removed is crucial to obtain
simpler REs (see Sect. 4.3 for a particular heuristics).

Example 5. Consider the FA of Example 4, i.e., FA(cfgP
incList). The sequence of

state eliminations, using the heuristics of Sect. 4.3, is shown in Fig. 2. Therefore,
the associated regular expression is (incList iList nat∗ nat add∗ add)∗ incList .

To summarize, the correctness of our trace analysis, i.e., the fact that the set of
call sequences in a program belong to the regular language accepted by the gen-
erated FA or represented by the associated RE, is a straightforward consequence
of Corollary 1 and results from [24] (for approximating CFGs with SRGs) and
[1, 7, 32] (for constructing FAs and REs associated to a SRG).

As for its computational cost, all steps involved in the process are linear in
the size of the source program and, thus, reasonable run times can be expected.

4 Predicting the Effectiveness of Partial Evaluation

The output of the trace analysis gives us the context where every predicate call
appears. In this section, we determine (with the help of a termination analysis,
namely a size-change analysis) which predicate calls could be deleted by partial
evaluation from the computed traces. By analyzing the traces before/after partial
evaluation, one can extract useful conclusions on its effectiveness.

4.1 Size-Change Analysis

In this section, we present an informal account of the size-change analysis for
logic programs introduced in [31].

In contrast to other termination analysis for logic programs (e.g., [9, 21]),
the size-change analysis of [31] considers strong termination [5], i.e., termination
of all SLD derivations w.r.t. any computation rule. Although this is a strong
requirement, it is quite useful in the context of partial evaluation since it allows us
to use rather liberal selection policies at specialization time without recomputing
the termination analysis every time a body atom is marked as “non-unfoldable”
(a detailed discussion on this topic can be found in [20]).

Size-change analysis proceeds in two steps: first, size-change graphs are built
with information on how the size of predicate arguments changes from one call
to another; then, a sort of transitive closure is computed in order to identify the
(potential) program loops. Size-change graphs are parametric w.r.t. a reduction
pair (%,�) which is induced from a symbolic norm ||·||:
Definition 4 (symbolic norm [21]). Given a term t,

||t|| =
{

m +
∑n

i=1 ki||ti|| if t = f(t1, . . . , tn), n > 0
t if t is a variable

where m and k1, . . . , kn are non-negative integer constants depending only on
f/n. Note that we associate a variable over integers to each logical variable (we
use the same name for both since the meaning is clear from the context).

12



Then, we have t1 � t2 (resp. t1 % t2) if ∀||t1|| > ||t2|| (resp. if ∀||t1|| > ||t2||).
Here, the use of variables in the range of symbolic norms provides a simple
mechanism to express dependencies between the sizes of terms. Two popular
instances of symbolic norms are the symbolic term-size norm ||·||ts (which counts
the arities of the term symbols) and the symbolic list-length norm ||·||ll (which
counts the number of elements of a list), e.g.,

f(X, Y ) � f(X, a) since ||f(X, Y )||ts = X + Y + 2 > X + 2 = ||f(X, a)||ts
[X|R] % [a|R] since ||[X|R]||ll = R + 1 > R + 1 = ||[a|R]||ll

For every pair of atoms (H,Bi) associated to a clause H ← B1, . . . , Bn with
n > 0 (i.e., there are no size-change graphs associated with facts), we construct
a size-change graph with edges between the arguments of H and Bi when the
size of the corresponding terms decrease w.r.t. a given reduction pair (%,�).

Example 6. Consider the program of Example 1. In this case, the size-change
graphs associated to, e.g., clause c3 are as follows:

iList/4 −→ nat/1 iList/4 −→ add/3 iList/4 −→ incList/3
1iList 1nat

2iList

3iList

% 88pppppppp

4iList

1iList
%

..

1add

2iList 2add

3iList

%

??

3add

4iList

� 88

1iList 1incList

2iList

% 33hhhhhhh
2incList

3iList

% 33hhhhhhh
3incList

4iList

� 33hhhhhhh

using a reduction pair induced from the symbolic term-size norm.

Now, in order to identify the program loops, we should compute roughly a tran-
sitive closure of the size-change graphs by composing them in all possible forms.
Basically, given two size-change graphs:

G = ({1p, . . . , np}, {1q, . . . ,mq}, E1) H = ({1q, . . . ,mq}, {1r, . . . , lr}, E2)

w.r.t. the same reduction pair (%,�), their concatenation is defined by

G • H = ({1p, . . . , np}, {1r, . . . , lr}, E)

where E contains an edge from ip to kr iff E1 contains an edge from ip to some
jq and E2 contains an edge from jq to kr. Furthermore, if some of the edges are
labeled with �, then so is the edge in E; otherwise, it is labeled with %.

Among all computed concatenations of size-change graphs, we only need to
consider the idempotent graphs (i.e., those graphs G with G • G = G), because
they represent the (potential) program loops.
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Example 7. For the program of Example 1, we compute the following idempotent
size-change graphs:

incList/3 −→ incList/3 iList/4 −→ iList/4 add/3 −→ add/3

1incList
� // 1incList

2incList

% // 2incList

3incList
� // 3incList

1iList 1iList

2iList
� //

� 00

2iList

3iList

% // 3iList

4iList
� // 4iList

1add
� // 1add

2add

% // 2add

3add
� // 3add

nat/1 −→ nat/1

1nat
� // 1nat

These graphs represent how the sizes of the arguments of the three potentially
looping predicates decrease from one iteration to the next.

In the following, we denote by callsRP (Q0) the set of calls in the computations of
a goal Q0 with program P and a computation rule R. Also, we say that a query
Q is strongly terminating w.r.t. a program P if every SLD derivation for Q with
P and R is finite for any computation rule R.

Once the idempotent size-change graphs of a program are computed, the
following result characterizes its strong termination. Basically, we require the
strictly decreasing parameters of (potentially) looping predicates to be instanti-
ated enough8 w.r.t. a given symbolic norm in the considered computations:

Theorem 2 (strong termination [31]). Let P be a program and (%,�) be a
reduction pair induced by a symbolic norm ||·||. Let A be a set of atoms. If every
idempotent size-change graph for P contains at least one edge ip

�−→ ip such that,
for every atom A ∈ A, computation rule R, and atom p(t1, . . . , tn) ∈ callsRP (A),
ti is instantiated enough w.r.t. ||·||, then P is strongly terminating w.r.t. A.

Note that ti should be instantiated enough in every possible derivation for the
considered set of atoms w.r.t. any computation rule. Obviously, this is an unde-
cidable condition because the set callsRP (A) is generally infinite. Luckily, in the
context of partial evaluation this condition can be simply approximated by using
the information provided by a standard binding-time analysis (which is already
available in many partial evaluators).

Example 8. Consider the program of Example 1 and the idempotent size-change
graphs of Example 7. Here, Theorem 2 guarantees the termination of SLD reso-
lution (with any computation rule) for those computations in which the following
parameters are instantiated enough w.r.t. the symbolic term-size norm ||·||ts:

– either the first or the third parameter of incList ,
– either the second or the fourth parameter of iList ,
– the first parameter of nat , and
– either the first or the third parameter of add .

8 A term t is instantiated enough w.r.t. a symbolic norm || · || if ||t|| is an integer
constant [21]. A closely related notion is that of rigidity [6], where a term t is rigid
w.r.t. a norm ||·|| if, for any substitution σ, ||tσ|| = ||t||.
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4.2 Transforming Call Traces

In this section, we consider that the call traces of a program P are safely ap-
proximated by a finite automaton FAP constructed as in Sect. 3 (extending the
forthcoming transformation to regular expressions is straightforward). We also
consider that the output of a binding-time analysis (BTA) is available. This is
not a limitation since current offline partial evaluators for logic programs include
a BTA (e.g., Logen [19]).

Here, for simplicity, we consider that the BTA takes a program and an ab-
stract atom, i.e., an atom of the form p(b1, . . . , bn) with p/n ∈ Π and bi ∈ {s, d}
for i = 1, . . . , n, and returns a division that classifies every program parameter
as either static or dynamic.9 We denote a division by a set of abstract atoms;
furthermore, we consider that divisions contain one (and only one) abstract atom
for each predicate (i.e., we consider a monovariant BTA).

Our first transformation deals with intermediate predicates, i.e., non-recursive
predicates that can be safely unfolded at specialization time. This transforma-
tion is related to the transition compression of traditional partial evaluation [18]
and is independent of the computed division.

In what follows, given a state s, each transition (s, , s′), s 6= s′, is called an
out-transition of s, each transition (s′, , s), s 6= s′, is called an in-transition of
s, and each transition (s, , s) is called a self-looping transition of s.

Definition 5 (elimination of intermediate states).
Let FAP = 〈Q,Σ, δ, s0, F 〉 be the trace FA associated to program P . Let s ∈
Q \ {{s0} ∪ F} be a state. We say that s ∈ Q is an intermediate state if δ
contains exactly one in-transition (s′, q′, s), one out transition (s, q′′, s′′), and
no self-looping transition for s. In this case, FAP can be transformed into

FA′
P = 〈Q,Σ, δ \ {(s, q′′, s′′)} ∪ {(s, ε, s′′)}, s0, F 〉

The transformation is applied iteratively as long as FA′
P differs from FAP .

As an example, one can consider the FA shown in the leftmost, topmost corner
of Fig. 2. Here, state s3 is an intermediate state and can thus be eliminated.
Observe that, in contrast to the state elimination of Sect. 3.3 (which returns the
second FA in Fig. 2), we do keep the “eliminated” state and just replace the
terminal symbol in the out-transition with ε (see Fig. 3 (a)). This will simplify
the comparison between the original and the transformed FAs.

The rationale for our transformation is as follows: the labels of the out-
transitions for intermediate states correspond to predicates that are called from
a single program point. Therefore, we can safely unfold these calls during spe-
cialization and, hence, they will not appear in the partially evaluated program.

Our second, and most important, transformation deals with the output of the
size-change analysis and is parameterized by a given division. Roughly speaking,
9 In practice, we would get more accurate results by considering a BTA that com-

putes binding types as in [12], which suffices for checking the “instantiated enough”
condition of Theorem 2.
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Fig. 3. Transformation of trace FAs

the information in the division is used to determine which predicate arguments
are statically controlled (i.e., they fulfill the termination condition of Theorem 2).

Definition 6 (elimination of static loops).
Let FAP = 〈Q,Σ, δ, s0, F 〉 be the trace FA associated to program P . Let G be the
set of idempotent size-change graphs of P and µ a division.

Then, we say that a predicate q ∈ Σ is statically controlled if, for each idem-
potent size-change graph G ∈ G for q, there exists at least one edge iq

�−→ iq
such that q(b1, . . . , bi, . . . , bn) ∈ µ and bi = s.10

Now, for each statically controlled predicate q, we transform FAP into FA′
P =

〈Q,Σ \ {q}, δ′, s0, F 〉, where δ′ is obtained from δ by replacing each transition
(s, q, s′) with (s, ε, s′).

The rationale for this transformation is as follows: if the condition of Theorem 2
hold for a given predicate, all calls to this predicate can be finitely unfolded with
the available information (denoted by a division) and, thus, one can expect that
any reasonable partial evaluator will remove it during specialization.

Example 9. Consider the program of Example 1 and the idempotent size-change
graphs shown in Example 7. The original trace FA for this program is shown
in the leftmost, topmost corner of Fig. 2. After the elimination of intermediate
states (the case of s3), we get the trace FA shown in Fig. 3 (a).

Now, if we consider the following division:

µ1 = {incList(d, s, d), iList(d, d, s, d), nat(s), add(s, d, d)}

10 With a more accurate BTA, this condition could be relaxed to require a parameter
which is instantiated enough w.r.t. the symbolic norm of the size-change analysis.
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then nat and add become statically controlled and, hence, we get the transformed
trace FA of Fig. 3 (b). Finally, if we consider the following division:

µ2 = {incList(s, d, d), iList(s, s, d, d), nat(d), add(d, s, d)}

then incList and iList are now statically controlled and hence we get the trans-
formed trace FA of Fig. 3 (c).

Clearly, we could eliminate those states whose transitions are all labeled with
ε similarly to the standard state elimination process of Sect. 3.3. However, we
think that keeping the structure of the original trace FA may help the user—and
automated analysis tools—to formally compare the original and transformed
trace FAs.

For instance, if we look at the trace FA of Fig. 3 (a), we can conclude that
even if no static information is provided, a significant optimization can still be
achieved by partial evaluation: in every iteration for incList an unfolding is saved
(the call to iList).

Consider now the trace FA of Fig. 3 (b). Here, we achieve even a more
significant improvement since, in every iteration for incList , we save not only
the unfolding of iList but also the complete evaluation of the recursive calls to
nat and add .

Finally, consider the trace FA of Fig. 3 (c). Here, we could expect a similar run
time for the specialized program as in the case of Fig. 3 (a) since the elimination
of the outer loop (predicates incList and iList) will only imply saving a constant
number of steps (that are moved from run time to partial evaluation time).

4.3 The Approach in Practice

A prototype tool, called Pepe, for estimating the speedup of partial evaluation
has been developed. It is implemented in Prolog and includes the trace analysis
of Sect. 3, the size-change analysis of Sect. 4.1, and a simple (monovariant) BTA.

Given a program and an abstract atom, the tool returns two regular ex-
pressions that represent the call traces of the original and partially evaluated
programs. The tool is publicly available through a simple web interface from
http://german.dsic.upv.es/pepe.html. This is mainly a proof-of-concept im-
plementation and much work can still be done to improve it, e.g., depicting
graphically the finite automata rather than their associated textual regular ex-
pressions, allowing the user to focus on how a given part of the program would
change by the partial evaluation, adding automated tools for determining the
best division (or the best one from a number of alternatives), etc.

Actually, a challenge of the current implementation is showing the shortest
possible regular expression. A drawback of the state elimination method is that
different sequences of state removals may give rise to different regular expressions
for the same language. There exists in the literature several approaches that allow
one to produce shorter regular expressions, e.g., [13, 16]. In particular, we have
implemented a slight variant of the technique in [13], which proposes a heuristics
based on assigning weights to the states of the FA and then choosing the state
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Table 1. Experimental results

Benchmark Trace Regular Expressions (original/specialized)

applast(d, s, d) applast app* app (last last_)* last

run time speedup: 2.5 _______ app* app (last _____)* last

incList(s, d, d) (incList iList nat* nat add* add)* incList

run time speedup: 0.98 (_______ _____ nat* nat add* add)* _______

incList(d, s, d) (incList iList nat* nat add* add)* incList

run time speedup: 5.25 (incList _____ ___* ___ ___* ___)* incList

match(s, d) match (loop eq)* loop + match (loop eq + loop neq next)* loop

run time speedup: 6.72 _____ (loop __)* loop + _____ (loop __ + loop ___ next)* loop

power(d, s, d) power* power (mult* mult (add* add)*)*

run time speedup: 1.21 _____* _____ (mult* mult (add* add)*)*

with the lightest weight. Given a transition (s, α, s′), its weight is the number of
characters in α. Then, the weight of a state is obtained as the sum of the weights
of its in-transitions, its out-transitions, and its self-looping transitions.

Consider, e.g., the FA in the leftmost, topmost corner of Fig. 2. Then, the
weight of the states—which are not a start or a final state—is as follows:11

s1 = 3 s3 = 2 s4 = 3 s5 = 3

Thus the first state to be removed is s3. In the next FA of the sequence, we have
the following weights:

s1 = 4 s4 = 4 s5 = 3

Therefore, either s1 or s4 could be removed. Here, we consider first those states
with exactly one in-transition and one out-transition (this is a refinement over
the standard technique of [13] that gives good results in our setting). Hence state
s4 is chosen. The new weights are as follows:

s1 = 6 s5 = 6

Again, both states have the same weight, but only s5 fulfill the above condition.
Thus we first remove s5 and, finally, s1.

Now, we show the results of a preliminary experimental evaluation with some
typical benchmarks. Table 1 shows, for each benchmark, the abstract atom used
for the partial evaluation, the experimental speedup (obtained by partially eval-
uating them with Proff [28], a simple offline partial evaluator for pure Prolog),
the original regular expression and the transformed one according to Sect. 4.2.

Observe, for instance, the case of incList (the program of Example 1):
having a static first argument, as in incList(s, d, d), has no (positive) impact
on the associated partial evaluation since no call in the main loop is removed;
in contrast, it is the main loop that is fully unrolled. Here, the slight slowdown
could be explained by the likely increase in code size and memory consumption
11 Note that every predicate symbol is considered as a single character.
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due to loop unrolling. In contrast, if we consider incList(d, s, d), the outer loop
for incList remains but all calls to iList, nat, and add are fully unfolded,
which explains the significant performance improvement. Benchmarks applast
and match are classical examples where partial evaluation may get a significant
improvement. As can be seen in the associated regular expressions, some steps
inside a loop are reduced in each example. Finally, benchmark power shows
an example where only some calls to power are unfolded (hence a constant
improvement) and, thus, no significant speedup is achieved.

Clearly, the finite automata or regular expressions produced by our technique
are not always easy to analyze. For small examples, they can help the user to
understand why adding more static information has no effects in some cases, why
significant improvements can be achieved even with no static data, etc. For larger
programs, however, the analysis becomes rather complex and the development
of analysis techniques and tools will be required, an interesting topic for further
research.

5 Related Work

We find very few works devoted to formally analyze the effectiveness of partial
evaluation. For instance, [3] establishes several properties of program transfor-
mations based on folding/unfolding in the context of logic programming. In
particular, he proves that superlinear speedup cannot be accomplished by par-
tial evaluation (this result can also be found in [4] for a flow chart language).
[4] develops a speedup analysis that, for any binding-time annotated program,
computes a relative speedup interval such that the specialization of this program
will result in a speedup within the predicted interval. Our approach is partly in-
spired by the work of [4], but several significant differences exist: they determine
the program loops statically in the source program, while we use a combination
of size-change analysis and trace analysis to identify the program loops and the
context where they appear; [4] is formalized in the context of a simple flow chart
language, while we consider a logic programming language; they do not distin-
guish whether the static parameters decrease strictly or non-strictly from one
call to another, while this is essential in our approach.

Regarding our trace analysis, we share the aims of previous work by Gallagher
and Lafave [14]. There are, however, a number of important differences: they gen-
erate trace terms abstracting computation trees independently of a computation
rule, while we generate sequences of predicate calls for a specific computation
rule; also, their approximation technique is based on abstract interpretation [10],
while ours is based on (simpler) techniques from formal languages and automata
theory; the main difference, though, is that they do not include a technique for
enumerating the (possibly infinite) set of trace terms of a program, while this
is a key ingredient of our approach, where call traces are elegantly represented
by means of finite automata or regular expressions (since they form a regular
language, in contrast to the trace terms of [14]).
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As mentioned in Sect. 1, there are some recent approaches (e.g., [11, 27])
where experimental frameworks for estimating the best division are introduced.
Although their aim is similar to ours, we put the emphasis on developing a
symbolic framework and thus our goals are different. Indeed, both approaches
can be seen as complementary.

To summarize, this work constitutes our last contribution from a long-term
research on formally measuring and estimating the effects of partial evalua-
tion (see, [2, 29, 30]). These works, however, never considered prediction (i.e.,
speedups were measured a posteriori).

6 Conclusions and Future Work

Predicting the potential speedup that can be achieved by partial evaluation is
a challenge that has received little attention so far. In this work, we introduced
a symbolic framework for analyzing the effects of a partial evaluation given a
program and an initial call. Basically, we use a size-change analysis to determine
which recursive predicates could be safely unfolded because their control flow is
statically determined by the available information. Then, a trace analysis has
been introduced in order to get the context of each procedure call, so that the
impact of its elimination can be better estimated.

The techniques introduced in this paper can be seen as a first step for the
development of automated quantitative techniques and tools for predicting the
potential speedup, thus it opens a number of interesting lines for further research.
For instance, we could define formal techniques for comparing finite automata
or regular expressions (with the same structure), simple cost models based on
the output of the trace analysis, tools for easing the graphical inspection of large
finite automata and regular expressions, etc.
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