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Juan José González-Abril and Germán Vidal[0000−0002−1857−6951]

MiST, VRAIN, Universitat Politècnica de València
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Abstract. The execution of concurrent applications typically involves
some degree of nondeterminism, mostly due to the relative speeds of con-
current processes. An essential task in state-space exploration techniques
for the verification of concurrent programs consists in finding points in an
execution where alternative actions are possible. Here, the nondetermin-
istic executions of a program can be represented by a tree-like structure.
Given the trace of a concrete execution, one first identifies its branching
points. Then, a new execution can be steered up to one of these branch-
ing points (using, e.g., a partial trace), so that an unexplored branch
can be considered. From this point on, the execution proceeds nondeter-
ministically, eventually producing a trace of the complete execution as a
side-effect, and the process starts again. In this paper, we formalize this
operation—partially driving the execution of a program and then produc-
ing a trace of the entire execution—, which we call prefix-based tracing.
It combines ideas from both record-and-replay debugging and execution
tracing. We introduce a semantics-based formalization of prefix-based
tracing in the context of a message-passing concurrent language like Er-
lang. Furthermore, we also present an implementation of prefix-based
tracing by means of a program instrumentation.

1 Introduction

Message-passing concurrency mainly follows the so-called actor model. At run-
time, concurrent processes can only interact through message sending and re-
ceiving, i.e., there is no shared memory. In this work, we further assume that
communication is asynchronous and that each process has a local mailbox (a
queue), so that each sent message is eventually stored in the target process’
mailbox. Moreover, we consider that processes can be dynamically spawned at
runtime. In particular, we consider a subset of the programming language Er-
lang [3] for our developments. We note that, in practice, some Erlang built-in’s
involve shared-memory concurrency; nevertheless, we will not consider them in
this work.

? This work has been partially supported by grant PID2019-104735RB-C41 funded by
MCIN/AEI/ 10.13039/501100011033, by the Generalitat Valenciana under grant
Prometeo/2019/098 (DeepTrust), and by French ANR project DCore ANR-18-
CE25-0007.
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In the context of a message-passing concurrent language, computations are
typically nondeterministic because of the relative speeds of processes. Consider,
for instance, three processes, p1, p2, and p3. If p1 and p2 both send a message
to process p3, the order in which these messages are received may not be fixed
(e.g., when the actions of p1 and p2 are unrelated). In such a case, we say that
the messages race (for p3). Exploring all alternatives for message races is a key
ingredient of state-space exploration techniques like stateless model checking [5]
or reachability testing [13].

In order to identify message races, state-space exploration methods usually
consider some kind of execution trace (e.g., interleavings in [1] or SYN-sequences
in [13]). An execution trace can be seen as an abstraction of an execution which
still contains enough information to identify sources of nondeterminism and, in
particular, message races. Every time a race is identified, alternative executions
are considered so that all feasible executions are systematically explored.1 A new
execution of the program should be driven in such a way that it reproduces the
previous execution up to the point where the race was found (as in record-and-
replay debugging techniques), then chooses a different message and, from this
point on, follows the usual nondeterministic semantics. Furthermore, a trace of
the new execution should be eventually produced as a side-effect, so that the
process can start again. In the following, we refer to this operation combining
replay and tracing as prefix-based tracing.

In this work, we formalize the notion of prefix-based tracing in the context of
a message-passing concurrent language like Erlang. Despite the fact that prefix-
based tracing is ubiquitous in state-space exploration methods, we are not aware
of any previous semantics-based formalization. In particular, a similar operation
is called prefix-based replay in [8], though no formal definition is given. Other
approaches, like [2] in the context of stateless model checking of Erlang programs,
insert preemptive points in the code and, then, force the program to follow a
particular scheduling up to a given point, then proceeding nondeterministically.
However, as in [8], no semantics-based formalization is presented.

We note that prefix-based tracing can be seen as a generalization of tradi-
tional tracing and replay techniques. In particular, when no input trace is pro-
vided, the technique boils down to standard tracing. On the other hand, if the
trace of a complete execution is provided, then it behaves as a replay debugger,
so that the entire execution follows the given trace. Therefore, both tracing and
replay can be seen as particular instances of the notion of prefix-based tracing.

Furthermore, besides the instrumented semantics, we also present an imple-
mentation of prefix-based tracing as a program instrumentation. In this case,
given a program, we produce an instrumented version that is parametric w.r.t. a

1 In practice, dynamic partial order reduction techniques [4] are used to avoid explor-
ing alternative executions which are causally equivalent to an already considered
execution. Loosely speaking, two executions are causally equivalent if they produce
the same outcome no matter if the sequence of actions is different. See, e.g., [11,12]
for a formal definition of causal equivalence in the context of the language Erlang.
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particular (possibly partial) trace.2 Then, given a particular trace, the program
can be executed in the standard runtime environment so that it follows the ac-
tions in this trace and, then, proceeds nondeterministically, eventually producing
a trace of the complete execution as a side-effect.

The paper is organized as follows. Section 2 presents a summary of the con-
current features of the considered language and its semantics. Then, Section 3
introduces the notions of trace and log, and formalizes prefix-based tracing us-
ing an instrumented semantics. In turn, Section 4 presents the details of an
implementation of prefix-based tracing as a program instrumentation. Finally,
Section 5 concludes and points out some directions for future work.

2 A Message-Passing Concurrent Language

In this section, we present the semantics of a message-passing concurrent lan-
guage which can be seen as a subset of the Erlang language [3]. Following [15,10],
we consider a layered semantics: an expression semantics and a system seman-
tics. The expression semantics is essentially a typical call-by-value functional
semantics defined on local states, which include an environment (i.e., a mapping
from variables to values), an expression (to be reduced) and a stack; see [6] for
more details. Since this is orthogonal to the topics of this paper, we will only
introduce the following notation: ls

z→ ls′ denotes a reduction step, where ls, ls′

are local states and z is a label with some information associated to the reduction
step.

So-called local steps are denoted with the label ι and do not perform any
side-effect at the system level. In contrast, the reduction of some—typically
concurrent—actions may require a side-effect at the system level. Here, we con-
sider the following global actions with side-effects:

– spawn(mod , fun, args): this expression dynamically creates a new process to
evaluate function fun (defined in module mod) with arguments args (a list).
E.g., spawn(test , client , [S, c1]) spawns a process that evaluates the expres-
sion client(S, c1), where function client is defined in module test .3 In the
expression semantics, a call to spawn reduces to a fresh identifier, called pid
(for process identifier), that uniquely identifies the new process. The step
is labeled with spawn(κ, ls0), where ls0 is the initial local state for the new
process and κ is a special variable (a sort of future) that will be eventually
bound—in the system semantics—to the pid of the spawned process.

– p ! v: it sends value v (the message) to process p (a pid). The expression
reduces to v and eventually stores this value in the mailbox of process p as a
side-effect. Sending a message is an asynchronous operation, so the process

2 Hence, the program is only instrumented once.
3 As in Erlang, functions and atoms (constants) begin with a lowercase letter while

variables start with an uppercase symbol. The language has no user-defined data
constructors, but allows the use of lists—following the usual Haskell-like notation—
and tuples of the form {e1, . . . , en}, n ≥ 1 (a polyadic function).
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main() ->

S = spawn(bank, [0]),

spawn(customer, [S]).

bank(B) ->

receive

{deposit,A}

-> bank(B+A);

{C,{withdraw,A}} when A=<B

-> C ! {ok,B-A},

bank(B-A);

_ -> C ! error, bank(B)

end.

customer(S) ->

S ! {deposit,120},

S ! {deposit,42},

S ! {self(),{withdraw,100}},

receive

{ok,B} -> io:format("Current balance: ~p~n",[B]);

error -> io:format("Insufficient balance")

end.

Fig. 1: A simple Erlang program.

continues immediately with the evaluation of the next expression. In this
case, the step in the expression semantics is labeled with send(p, v), which
suffices for the system semantics to perform the corresponding side-effect.

– receive p1 → e1; . . . ; pn → en end: this expression looks for the oldest message
in the process mailbox that matches some pattern pi and, then, continues
with the evaluation of ei. As in Erlang, messages are matched sequentially
against the patterns from top to bottom. When no message matches any
pattern, execution is blocked until a matching message reaches the mailbox
of the process. In this case, the step is labeled with rec(κ, cs), where cs are
the branches of the receive statement (i.e., p1 → e1; . . . ; pn → en above).
Here, κ will be bound to the expression ei of the selected branch in the
system semantics.

– self(): it reduces to the pid of the current process. Here, the step is labeled
with self(κ), so that κ is bound to the pid of the current process in the
system semantics.

Example 1. Consider the simple client-server program shown in Figure 1. Here,
we consider that the execution starts with the call main(). Function main then
spawns two new processes that will evaluate bank(0) and customer(S), respec-
tively, where S is the pid of the first process (the server).

Function bank implements a simple server that takes only two types of re-
quests: {deposit, A}, to make a deposit of amount A, and {C, {withdraw, A}}, to
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make a withdraw of amount A, where C is the pid of the customer that makes
the request. For simplicity, we assume that the bank has only one account (that
of the customer), which is initialized to zero.

Given a request of the form {deposit, A}, the server simply performs a recur-
sive call with the updated balance. If the request has the form {C, {withdraw, A}}
and the amount A is less than or equal to the current balance,4 it sends a mes-
sage {ok, B− A} back to the customer and calls function bank with the updated
balance. In any other case (denoted with the pattern “ ”), the message error is
sent back to the customer.

The implementation of the customer is very simple. It only performs three
requests to the server. Note that the third one simulates a synchronous com-
munication since it suspends the execution until a message from the server is
received. Here, the built-in function format (module io) is used for printing
messages.

In the remainder of this paper, a process is denoted as follows:

Definition 1 (process). A process is denoted by a configuration of the form
〈p, ls, q〉, where p is the pid (process identifier) of the process, which is unique in
a system, ls is the local state and q is the process mailbox (a list).

A system is then defined as a pair Γ ;Π, where Γ represents the network (some-
times called the global mailbox [10] or the ether [16]) and Π is a pool of processes.
In the following, we often say “process p” to mean “process with pid p”.

The network, Γ , is defined as a set of queues, one per each pair of (not
necessarily different) processes. For instance, if we have two processes with pids
p1 and p2, then Γ will include four queues associated to the pairs (p1, p1), (p1, p2),
(p2, p1), and (p2, p2), representing all possible communications in the system. We
use the notation Γ [(p, p′) 7→ qs] either as a condition on Γ or as a modification
of Γ , where p, p′ are pids and qs is a (possibly empty) queue; for simplicity, we
assume that queues are initially empty for each pair of processes. Queues are
denoted by (finite) sequences, which are denoted as follows: a1, a2, . . . , an, n ≥ 0,
where [ ] denotes an empty sequence. Here, es+es′ denotes the concatenation of
sequences es and es′; by abuse, we use the same notation when a sequence has
only a single element, i.e., e1+(e2, . . . , en) = (e1, . . . , en−1)+en = e1, . . . , en.

The second component, Π, is denoted as 〈p1, ls1, q1〉 | · · · | 〈pn, lsn, qn〉,
where “ |” represents an associative and commutative operator. We often denote
a system as Γ ; 〈p, ls, q〉 |Π to point out that 〈p, ls, q〉 is an arbitrary process of
the pool (thanks to the fact that “ | ” is associative and commutative).

The rules of the system semantics can be found in Figure 2. They are similar
to the those in [10], with only a few differences:

– The local state is abstracted in our semantics, so that it can be instantiated
to Core Erlang (as in [10]) but also to Erlang (as in [6]).

4 Here, we consider the full syntax for receive statements, receive p1 [when g1] →
e1; . . . ; pn [when gn]→ en end, where each branch might have a guard gi that must
be evaluated to true in order to select this branch.
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(Exit)
final(ls)

Γ ; 〈p, ls, q〉 |Π ↪→ Γ ;Π

(Local)
ls

ι−→ ls′

Γ ; 〈p, ls, q〉 |Π ↪→ Γ ; 〈p, ls′, q〉 |Π

(Self )
ls

self(κ)−−−−→ ls′

Γ ; 〈p, ls, q〉 |Π ↪→ Γ ; 〈p, ls′{κ 7→ p}, q〉 |Π

(Spawn)
ls

spawn(κ,ls0)−−−−−−−→ ls′ and p′ is a fresh pid

Γ ; 〈p, ls, q〉 |Π ↪→ Γ ; 〈p, ls′{κ 7→ p′}, q〉 | 〈p′, ls0, [ ]〉 |Π

(Send)
ls

send(p′,v)−−−−−−→ ls′

Γ [(p, p′) 7→ qs]; 〈p, ls, q〉 |Π ↪→ Γ [(p, p′) 7→ qs+v]; 〈p, ls′, q〉 |Π

(Deliver)
Γ [(p′, p) 7→ v+qs]; 〈p, ls, q〉 |Π ↪→ Γ [(p′, p) 7→ qs]; 〈p, ls, q+v〉 |Π

(Receive)
ls

rec(κ,cs)−−−−−→ ls′ and matchrec(ls′, κ, cs, q) = (ls′′, q′)

Γ ; 〈p, ls, q〉 |Π ↪→ Γ ; 〈p, ls′′, q′〉 |Π

Fig. 2: System semantics

– The network, Γ , is defined as a set of queues, so that the order of the messages
between any two given processes can be preserved (while Γ was defined as
a set of triples (sender, target,message) in [10] and the order could not be
preserved).

Moreover, in contrast to the system semantics in [12], we have process’ mail-
boxes and a rule for message delivery, which are abstracted away in [12], where
messages are directly consumed from Γ by receive statements. We note that this
is not a limitation of [12] since this work focuses on replay (reversible) debugging
and the trace of an actual execution is always provided. Therefore, their system
semantics needs not implement the actual semantics of the language but may
rely on the order of message reception given in the considered trace.

Let us briefly explain the transiton rules of our system semantics (Figure 2):

– Rule Exit removes a process from the pool when the local state is final,
i.e., when the expression to be reduced is a data term. If Γ contains some
nonempty queue for (p, p′), where p′ is the removed process, these messages
will never be delivered (which is coherent with the behavior of Erlang).

– Rule Local just updates the local state of the selected process according to
a transition of the expression semantics, while rule Self binds κ to the pid
of the current process.

– Rule Spawn updates the local state, binds κ to the pid of the new process and
adds a new initial process configuration with local state ls0 as a side-effect.



Prefix-Based Tracing in Message-Passing Concurrency 7

– Rule Send updates the local state and, moreover, adds a new message to
the corresponding queue of the network as a side-effect. For simplicity, we
implicitly assume that Γ is extended with a new queue for the pair (p, p′)
whenever it does not already exist.

– Rule Deliver nondeterministically (since Γ might contain several nonempty
queues with the same target process p) takes a message from the network
and moves it to the corresponding process mailbox.

– Finally, rule Receive consumes a message from the process mailbox using the
auxiliary function matchrec that takes the local state ls′, the future κ, the
branches of the receive expression cs, and the queue q. It then selects the
oldest message in q that matches a branch in cs (if any), and returns a new
local state ls′′ (where κ is bound to the expression in the selected branch)
and a queue q′ (where the selected message has been removed).

Note that the tracing semantics has two main sources of nondeterminism: select-
ing a process to apply a reduction rule, and selecting the message to be delivered
from the network (rule Deliver). Regarding the first point, one can for instance
implement a round-robin algorithm that performs a fixed number of transitions
(assuming the process is not blocked), then moves to another process, etc. As
for the selection of a message to be delivered, there are several possible strate-
gies. For instance, the CauDEr debugger [10,9,6] implements both a user-driven
strategy (where the user selects any of the available messages) and a random
selection.

Given systems α0, αn, we call α0 ↪→∗ αn a derivation; it is a shorthand for

α0 ↪→ . . . ↪→ αn, n ≥ 0

One-step derivations are simply called transitions. We use δ, δ′, δ1, . . . to denote
derivations and t, t′, t1, . . . for transitions. A system α is said initial if it has the
form E ; 〈p, ls, []〉, where E denotes a network with an empty for (p, p), p is the pid
of some initial process and ls is an initial local state containing the expression
to be evaluated. In the following, we assume that all derivations start with an
initial system.

3 Prefix-Based Tracing Semantics

In this section, we formalize the notion of prefix-based tracing for message-
passing concurrent programs. In order to trace a running application, [11] in-
troduces message tags, so that one can identify the sender and receiver of each
message, even if there are several messages with the same value. To be precise,
each message value v is now wrapped in a tuple of the form {`, v}, where ` is a
message tag which is unique in the considered execution.

Following [7], we consider that an execution trace is a mapping from pids to
sequences of terms denoting global actions (so we often refer to these terms as
actions). These terms can be seen as an abstraction of the corresponding actions,
including only some minimal information (but still enough for our purposes):
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p1 p2 p3 p4
s1 `1

d1
s2 `2

d2
r1
s3`3

d3
r2r3

s4 `4
d4 s5`5

d5 r4
r5

Fig. 3: Processes (pi, i = 1, . . . , 4) are represented as vertical dashed arrows (time
flows from top to bottom). Message sending and delivery is represented by solid
arrows labeled with a message tag (`i), from a sending event (si) to a delivery
event (di), i = 1, . . . , 5. Receive events are denoted by ri, i = 1, . . . , 5. Note that
all events associated to a message `i have the same subscript i.

Definition 2 (trace [7]). A trace is a mapping from pids to sequences of terms
of the form

– spawn(p), where p is the pid of the spawned process;
– exit, which denotes process termination;
– send(`, p), where ` is the tag of the message sent (initially stored in the

network) and p is the pid of the target process;
– deliver(`), where ` is the tag of the delivered message (i.e., moved from the

network to the mailbox of the target process);
– rec(`), where ` is the tag of the message consumed from the local mailbox.

We note that deliver events are attributed to the target of the message. Given a
trace T , we let T (p) denote the sequence of actions associated to process p in T .
Also, T [p 7→ as] denotes that T is an arbitrary trace such that T (p) = as; we
use this notation either as a condition on T or as a modification of T .

Example 2. Let us consider the following trace:

[ p1 7→ spawn(p3), spawn(p2), spawn(p4), send(`1, p3), exit;
p2 7→ send(`2, p3), deliver(`3), rec(`3), send(`4, p3), exit;
p3 7→ deliver(`1), deliver(`2), rec(`1), send(`3, p2), rec(`2),

deliver(`4), deliver(`5), rec(`4), rec(`5), exit;
p4 7→ send(`5, p3), exit ]

(1)

The associated execution can be informally represented using a simple message-
passing diagram, as shown in Figure 3, where we have skipped spawn actions for
clarity.

Observe that we do not need to fix a particular (global) interleaving for all the
actions in the trace. Only the order within each process matters; i.e., a trace



Prefix-Based Tracing in Message-Passing Concurrency 9

represents a partial order on the possible interleavings (analogously to the SYN-
sequences of [13]).

We also consider a simplification of the trace, called log in [11,12], where
process exit and message delivery actions are skipped and message sending is
represented just by send(`), without the pid of the target process.

Definition 3 (log). A log is a mapping from pids to sequences of terms of the
form spawn(p), send(`), and rec(`), where p is a pid and ` is a message tag. We
use the same notation conventions as for traces. Moreover, given a trace T , we
let log(T ) be the log, W, obtained from T by removing message delivery and exit
actions, as well as by replacing every action of the form send(`, p) by send(`).

For instance, the log obtained from the trace in Example 2 above is as follows:

[ p1 7→ spawn(p3), spawn(p2), spawn(p4), send(`1);
p2 7→ send(`2), rec(`3), send(`4);
p3 7→ rec(`1), send(`3), rec(`2), rec(`4), rec(`5);
p4 7→ send(`5) ]

(2)

Despite the simplification, the resulting log suffices to replay a given execution
[12, Theorem 4.22] or a causally equivalent one.5 Therefore, in the following, we
distinguish logs, which are useful to replay a given execution, and traces, which
can be used, e.g., to identify message races (as in [7]).

Consider, for instance, the execution of Figure 3. Here, we might have a
race for p3 between messages `1 and `2 (assuming both messages match the
constraints of the receive statement r1). If we swap the delivery of these messages,
we can have a new execution which is not causally equivalent to the previous
one and, thus, may give rise to a different outcome. A similar situation occurs
with messages `4 and `5. See [7] for more details on the computation of message
races. A typical state-space exploration method would follow these steps:

– First, one considers a random execution of the program and its associated
trace.

– The trace is then analyzed and its message races are identified (if any).

– For each message race, we construct a (partial) log that can be used to drive
the execution of the program to an execution point where a different choice is
made. Then, execution continues nondeterministically, eventually producing
a trace of the entire execution. We call this operation prefix-based tracing.

5 We say that two actions are causally related when one action cannot happen without
the other, e.g., message sending and receiving, spawning a process and any action
of this process, etc. Causality is often defined as the transitive closure of the above
relation. When two actions are not causally related, we say that they are independent.
Two executions are causally equivalent if they only differ in the order of independent
actions. Equivalently, two executions are causally equivalent if they have the same
log [12]. Actually, logs can be seen as a representation of so-called Mazurkiewicz
traces [14]. We refer the interested reader to [12] for more details.
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– The process starts again with the new executions, and so forth. Typically,
some backtracking algorithm is used in order to avoid considering the same
execution (or a causally equivalent one) once and again.

For instance, given the execution of Figure 3 and the associated trace in (1), we
have a race for p3 between messages `1 and `2. Here, the following partial log
could be used to drive the execution to a different choice, where message `2 is
delivered to process p3 before message `1:

[ p1 7→ spawn(p3), spawn(p2), spawn(p4), send(`1);
p2 7→ send(`2);
p3 7→ rec(`2);
p4 7→ send(`5) ]

(3)

In the instrumented semantics, a logged system is now denoted by a triple
W;Γ ;Π, where W is a (possibly partial) log. We will simply speak of systems
when no confusion can arise between logged and non-logged systems. Further-
more, we also need some auxiliary functions. In prefix-based tracing, some steps
might be driven by a log while others might not (e.g., when all the actions of a
process have been already consumed). In order to deal with these two situations
in a uniform way, we introduce the following function next:

next(p,W) =


(p′,W) if W(p) = [ ] and p′ is a fresh identifier
(p′,W[p 7→ as]) if W(p) = spawn(p′)+as
(`,W[p 7→ as]) if W(p) = send(`)+as
(`,W[p 7→ as]) if W(p) = rec(`)+as

Essentially, next(p,W) either consumes the first action of W(p) and returns the
corresponding pid p′ (if the first action is spawn(p′)) or a message tag ` (if the first
action is send(`) or rec(`)), or returns fresh identifiers whenW(p) is empty. It also
returns the log resulting from removing the consumed action (if any). Here, we
consider that pids and tags belong to the same domain for simplicity; otherwise,
one would need two different functions, next pid and next tag, depending on the
particular case.

Our second function, admissible, is used to check if delivering a message is
consistent with the current system. Note that message delivery is in principle a
nondeterministic operation in the standard semantics (Figure 2) when we have
messages in different queues of Γ addressed to the same target process. On
the other hand, once messages are delivered, the order is fixed and the receive
statements will consume them in a deterministic manner. Therefore, we should
ensure that message deliveries follow the corresponding log. For this purpose,
we introduce the auxiliary function admissible. Given a log W, if W(p) is not
empty, we have admissible(p,W[p 7→ as], q, `) = true if rec(`1), . . . , rec(`n), n > 0,
are the receive actions in as, q contains messages `1, . . . , `i, 0 ≤ i < n, and
` = `i+1. When log(p) is empty or contains no rec actions, function admissible
simply returns true in order to proceed nondeterministically as in the standard
semantics. Otherwise, it compares the list of messages to be received by p and
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(Exit) final(ls)

W;Γ ; 〈p, ls, q〉 |Π  p:exit W;Γ ;Π

(Local) ls
ι−→ ls′

W;Γ ; 〈p, ls, q〉 |Π  ε W, Γ ; 〈p, ls′, q〉 |Π

(Self )
ls

self(κ)−−−−→ ls′

W;Γ ; 〈p, ls, q〉 |Π  ε W;Γ ; 〈p, ls′{κ 7→ p}, q〉 |Π

(Spawn)
ls

spawn(κ,ls0)−−−−−−−→ ls′ and next(p,W) = (p′,W ′)

W;Γ ; 〈p, ls, q〉 |Π  p:spawn(p′) W ′;Γ ; 〈p, ls′{κ 7→ p′}, q〉 | 〈p′, ls0, [ ]〉 |Π

(Send)
ls

send(p′,v)−−−−−−→ ls′ and next(p,W) = (`,W ′)

W;Γ [(p, p′) 7→ qs]; 〈p, ls, q〉 |Π  p:send(`,p′) W ′;Γ [(p, p′) 7→ qs+{v, `}]; 〈p, ls′, q〉 |Π

(Deliver)
admissible(p,W, q, `) = true

W;Γ [(p′, p) 7→ {v, `}+vs]; 〈p, ls, q〉 |Π  p:deliver(`) W;Γ [(p′, p) 7→ vs]; 〈p, ls, q+{v, `}〉 |Π

(Receive)

ls
rec(κ,cs)−−−−−→ ls′ matchrec(ls′, κ, cs, q) = (ls′′, q′, `) and next(p,W) = (`,W ′)

W;Γ ; 〈p, ls, q〉 |Π  p:rec(`) W ′;Γ ; 〈p, ls′′, q′〉 |Π

Fig. 4: Prefix-based tracing semantics

the list of messages already in p’s mailbox in order to determine if ` is indeed
the next message that must be delivered in order to follow the order of message
receptions given by the log.

The instrumented semantics is defined by means of the labeled transition
system shown in Figure 4. Now, each transition is labeled with an event of the
form p :a where p is the pid of a process and a is the action performed by this
process. Let us briefly explain the transition rules:

– The first three rules, Exit, Local and Self are similar to their counterpart
in the standard semantics (Figure 2), since the log plays no role in these
cases. The only relevant difference is that we label the transition with the
corresponding action, p : exit, in the first rule, and ε (a null event) in the
other two rules.

– Rules Spawn and Send proceed in a similar way: when W(p) is not empty,
the pid of the new process (rule Spawn) or the message tag (rule Send) are
taken from the log. Otherwise, fresh identifiers are used, as in the standard
semantics of Figure 2. The transitions are labeled with the events p :spawn(p′)
and p :send(`, p′), respectively.

– Rule Deliver ensures that messages are delivered according to the order in
W(p). Observe that, given a process p, the order of message deliveries is now
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deterministic when W(p) is not empty and includes at least one rec action.
Here, the transition is labeled with the event p :deliver(`).

– Finally, rule Receive is similar to its counterpart in Figure 2, with only a
subtle difference: now, function matchrec also returns the tag of the selected
message, since it is required for the label of the transition, p : rec(`). We note
that function next is only used to consume an action from the log (when
W(p) is not empty) but it imposes no actual restriction on the transition,
since once the messages are in the process queue, message reception becomes
deterministic. This is why function admissible checks the log in order to
deliver messages in the right order.

Given a sequence of events es = (p1 :a1, p2 :a2, . . . , pn :an), we let actions(p, es)
denote the sequence of actions a′1, a

′
2, . . . , a

′
m such that p :a′1, p :a′2, . . . , p :a′m are

all the events of process p in es and in the same order. Then, given a derivation
δ = (α0  e1 α1  e2 . . .  en αn+1), n > 0, the associated trace, in symbols
trace(δ), is a trace T such that T (pi) = actions(pi, es) for each pid pi occurring
in es = (e1, . . . , en).

Following [12], we say that two derivations are causally equivalent if their logs
are the same (cf. Theorem 3.6 in [12]).6 Now, we focus on two scenarios for prefix-
based tracing: “pure tracing” and “pure replay”. In the following, we say that
a logged system is initial if it has the form E ; E ; 〈p, ls, [ ]〉. By abuse of notation,
we let E denote both a log where pid p is mapped to an empty sequence and a
network where the queue of (p, p) is empty. Similarly to the previous section, we
assume that all derivations start with an initial logged system.

The following result states that prefix-based tracing is indeed a conservative
extension of the standard semantics:

Theorem 1 (pure tracing). Let α ↪→ . . . ↪→ α′ be a derivation with the stan-
dard semantics (Fig. 2). Then, there is a derivation δ = (E ;α e1 . . . en E ;α′)
with the prefix-based semantics of Figure 4, where trace(δ) is its associated trace.

Proof. The proof is straightforward since function next always returns a fresh
pid/tag and function admissible always returns true when the log is empty. There-
fore, the only difference between the rules in Figure 2 and those in Figure 4 when
the log is empty is that the transitions are labeled with the corresponding event,
so that a trace can be obtained. ut

Let us now consider pure replay. In the following, we assume that all logs are
consistent, i.e., they have been obtained from the trace of a derivation. Moreover,
we say that a derivation consumes a log when it only performs a transition for
process p if W(p) is not an empty sequence. In other words, it performs a replay
of the execution represented by the log, and no more. The next result states
that, given the log of a derivation, prefix-based tracing with this log produces a
derivation which is causally equivalent to the original one.

6 To be precise, the semantics in [12] does not consider process mailboxes nor mes-
sage deliveries. Nevertheless, these actions are not observable in logs, and hence the
property carry over easily to our case.
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Theorem 2 (pure replay). Let W be a nonempty log and let δ = (W;α  e1

. . .  en E ;α′) be a derivation with the rules of Figure 4 that consumes log W.
Then, log(trace(δ)) =W.

Proof. (Sketch) The claim follows easily by induction on the length of the con-
sidered derivation. Since the base case is trivial, let us consider the inductive
case. Here, we make a case distinction on the applied rule to system W;α:

– If we perform a step with rules Exit, Local, Self or Deliver, the claim follows
trivially by induction since they have no impact on log(trace(δ)).

– Consider now a step with rule Spawn applied to a process p, and assume that
the log has the form W[p 7→ spawn(p′)+as] and the step is labeled with the
event p :spawn(p′). Hence, trace(δ) associates an action spawn(p′) to process
p and so does log(trace(δ)). Then, the claim follows by applying the inductive
hypothesis on the derived systemW[p 7→ as];α′′. A similar reasoning can be
made with rule Receive.

– Finally, we consider rule Send applied to process p, and assume that the
log has the form W[p 7→ send(`)+as]. Here, trace(δ) associates an action
send(`, p′) to process p and, thus, log(trace(δ)) will add send(`) to the se-
quence of actions of process p. Then, the claim follows by applying the in-
ductive hypothesis on the derived system W[p 7→ as];α′′. ut

In the next section, we introduce an implementation of prefix-based tracing by
means of a program instrumentation.

4 A Program Instrumentation for Prefix-Based Tracing

Now, we focus on the design of a program instrumentation to perform prefix-
based tracing in Erlang. In a nutshell, our program instrumentation proceeds as
follows:

– First, we introduce a new process, called the scheduler (a server), that will
be run as part of the source program.

– The scheduler ensures that the actions of a given log are followed in the
same order, and that the corresponding trace is eventually computed. It also
includes a data structure that corresponds to the network Γ introduced in
the previous section. In the instrumented program, all messages will be sent
via the scheduler.

– Finally, the sentences that correspond to the concurrent actions spawn, send
and rec are instrumented in order to interact with the scheduler. The re-
maining code will stay untouched.

The scheduler uses several data structures called dictionaries, a typical key-value
data structure which is commonly used in Erlang applications. Here, we consider
the following standard operations on dictionaries:

– fetch(k, dict), which returns the value val associated to key k in dict. We
write dict[k] as a shorthand for fetch(k, dict).
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– store(k, val, dict), which updates the dictionary by adding (or updating, if
the key exists) a new pair with key k and value val. In this case, we write
dict[k] := val as a shorthand for store(k, val, dict).

In particular, we consider the following dictionaries:

– Pids, which maps the pid of each process to a (unique) reference, i.e., Pids[p]
denotes the reference of pid p. While pids are relative to a particular ex-
ecution (i.e., the pid of the same process may change from one execution
to the next one), the corresponding reference in a log or trace is perma-
nent. This mapping is used to dynamically keep the association between
pids and references in each execution. For instance, an example value for
Pids is [{〈0.80.0〉, p1}, 〈0.83.0〉, p2}], where 〈0.80.0〉, 〈0.83.0〉 are Erlang pids
and p1, p2 are the corresponding references.

– LT, which is used to associate each process reference with a tuple of the form
{ls, as}, where ls is a (possibly empty) list with the events of a log and as
is a (possibly empty) list with the (reversed) trace of the execution so far.
The log is used to drive the next steps, while the second component is used
to store the execution trace so far. The list storing the trace is reversed for
efficiency reasons (since it is faster to add elements to the head of the list).
E.g., the initial value of LT for the partial log displayed in (3) is as follows:

[{p1, {[spawn(p3), spawn(p2), spawn(p4), send(`1)], [ ]}},
{p2, {[send(`2)], [ ]}}, {p3, {[rec(`2)], [ ]}}, {p4, {[send(`5)], [ ]}}]

– MBox, which represents the network Γ , also called global mailbox. The key
of this dictionary is the pid of the target process, and the value is another
dictionary in which the keys are pids (those of the sender processes) and the
values are lists of (tagged) messages. For instance, the value of MBox after
sending the first two messages of the execution shown in Figure 3 could be
as follows:

{〈0.84.0〉, {〈0.80.0〉, [{`1, v1}]},
{〈0.83.0〉, [{`2, v2}]}}

where 〈0.80.0〉, 〈0.83.0〉, 〈0.84.0〉 are the pids of p1, p2, p3, respectively, v1 and
v2 are the message values and `1 and `2 are their respective tags.

Let us now describe the instrumentation of the source code. First, every
expression of the form spawn(mod , fun, args) is replaced by a call to a new func-
tion spawn inst with the same arguments. The implementation of this function
is essentially as follows:

spawn inst(M,F,A)→
Pid = self(),
SpawnPid = spawn(fun()→

sched ! {Pid , spawn, self()},
apply(M,F,A)

end),
receive ack→ ok end,
SpawnPid .
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where spawn takes an anonymous function as argument (so that the new process
will evaluate the body of the anonymous function) and Erlang’s predefined func-
tion apply is used to compute the application of a function to some arguments.

Intuitively speaking, the new function (1) sends the message {P1, spawn, P2}
to the scheduler (here denoted by sched), where P1 is the pid of the current pro-
cess and P2 is the pid of the spawned process, and (2) inserts a receive expression
to make this communication synchronous. The reason for (2) is that every mes-
sage of the form {P1, spawn, P2} must add P2 to the data structure Pids, either
with a new reference or with the one in the current log. We require this operation
to be completed before either the spawned process or the one performing the
spawn can proceed with any other action. Otherwise, the scheduler could run
into an inconsistent state.

The instrumentation of message sending is much simpler. We just perform
the following rewriting:

e1 ! e2 ⇒ sched ! {self(), send, e1, e2}

where sched is the pid of the scheduler and self() is a predefined function that
returns the pid of the current process. Finally, the instrumentation of a receive
expression rewrites the code as follows:

receive p1 → e1; . . . ; pn → en end
⇒ receive {L1, p1} → sched ! {self(), rec, L1}, e1; . . . ;

{Ln, pn} → sched ! {self(), rec, Ln}, en end

where L1, . . . , Ln are fresh variables that are used to gather the tag of the re-
ceived message and send it to the scheduler.

The main algorithm of the scheduler can be found in Algorithm 1. First,
we have an initialization where the pid of the main process is associated with
the reference p1 in Pids, the initial logs are assigned to LT, and the mailbox is
initially empty. As is common in server processes, the scheduler is basically an
infinite loop with a receive statement to process the requests. Here, we consider
three requests, which correspond to the messages sent from the instrumented
source code. Let us briefly explain the actions associated to each message:

– If the message received has the form {p, spawn, p′}, where p, p′ are pids, we
look for the tuple associated to process Pids[p] in LT. If the log is empty,
we can proceed nondeterministically and just need to keep a trace of the
execution step. Here, we obtain a fresh reference, r′, add the pair {p′, r′} to
Pids, and update the trace in LT with the new action spawn(r′). If the log is
not empty, we proceed in a similar way but the reference is given in the log
entry. Finally, we have to acknowledge the reception of this message since
this communication is synchronous (as explained above).

– If the message received has the form {p, send, p′, v}, we again distinguish the
case where the process log is empty. In this case, we obtain a fresh reference
` (the message tag) and update LT with the new action send(`). Finally, we
use the auxiliary function process new msg to check the log of the target
process, p′, and then it proceeds as follows:
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Algorithm 1 Scheduler

Initialization
Pids := [{self(), p1}]; LT := /∗ prefix logs ∗/; MBox := { };

repeat
receive
{p, spawn, p′} →

case LT[Pids[p]] of
{[ ], as} → /∗ trace mode ∗/

r′ := new unique ref ();
update pids(p′, r′,Pids);
LT[Pids[p]] := {[ ], [spawn(r′)|as]};

{[spawn(r′)|ls], as} → /∗ replay mode ∗/
update pids(p′, r′,Pids);
LT[Pids[p]] := {ls, [spawn(r′)|as]};

p ! ack;
try deliver(p);

{p, send, p′, v} →
case LT[Pids[p]] of
{[ ], as} → /∗ trace mode ∗/

` := new unique ref ();
LT[Pids[p]] := {[ ], [send(`)|as]};
process new msg({p, p′, `, v},MBox, LT);

{[send(`)|ls], as} → /∗ replay mode ∗/
LT[Pids[p]] := {ls, [send(`)|as]};
process msg({p, p′, `, v},MBox, LT);

try deliver(p);
{p, rec, `} →

case LT[Pids[p]] of
{[ ], as} → /∗ trace mode ∗/

LT[Pids[p]] := {[ ], [rec(`)|as]}
{[rec(`)|ls], as} → /∗ replay mode ∗/

LT[Pids[p]] := {ls, [rec(`)|as]}
try deliver(p)

until true

• If the log of Pids[p′] is empty, we add the action deliver(`) to the trace of
Pids[p′] and then send the message to the target process: p′ !{`, v}, i.e., we
apply an instant-delivery strategy, where messages are delivered as soon
as possible (this is the usual action in the Erlang runtime environment).

• If the log is not empty, we do not know when this message should be
received. Hence, we add a new (tagged) message {`, v} from p to p′ to
the mailbox MBox, and add an action deliver(`) at the end of the current
log. Note that computed logs (as in [11,12]) should not contain deliver
actions. This one is artificially added to force the delivery of message `
as soon as possible (see function try deliver below).
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The pseudocode of function process new msg can be found below:

process new msg({p, p′, `, v},MBox, LT)→
case LT[Pids[p′]] of

{[ ], as′} → p′ ! {`, v},
LT[Pids[p′]] := {[ ], [deliver(`)|as′]};

{as, as′} → add message(p, p′, {`, v},MBox),
LT[Pids[p′]] := {as+deliver(`), as′}

end

If the log is not empty, we proceed in a similar way but the message tag is
given by the log and we call the auxiliary function process msg instead. This
function checks the log of the target process, Pids[p′], and then proceeds as
follows:

• If the next action in the log is rec(`), we add the action deliver(`) to the
trace of Pids[p′] and send the message to the target process: p′ ! {`, v}.

• If the first action is not rec(`), we add a new (tagged) message {`, v}
from p to p′ to the mailbox MBox. Finally, if the log of Pids[p′] contains
an action rec(`), we are done; otherwise, an action of the form deliver(`)
is added to the end of the log of process Pids[p′], as before.

The pseudocode of function process msg can be found below:

process msg({p, p′, `, v},MBox, LT)→
case LT[Pids[p′]] of

{[rec(`)|as], as′} → p′ ! {`, v},
LT[Pids[p′]] := {as, [deliver(`)|as′]};

{as, as′} → add message(p, p′, {`, v},MBox),
if not(member(rec(`), as))
then LT[Pids[p′]] := {as+deliver(`), as′}

end

– Finally, when the received message has the form {p, rec, `}, we just update
the trace with the new action rec(`) and, if the log was not empty, we remove
the first action rec(`) from the log.

Each of the above cases ends with a call try deliver(p), which is basically used
to deliver messages that could not be delivered before (because it would have
violated the order of some log). For this purpose, this function checks the next
action in the log of process Pids[p]. If it has either the form rec(`) or deliver(`),
and the message tagged with ` is the oldest one in one of the queues of MBox
with target p, then we send the message to p, remove it from MBox and add
deliver(`) to the trace of process Pids[p]. Furthermore, in case the element of
the log was deliver(`), we recursively call try deliver(p) to see if there are more
messages that can be delivered. In any other case, the function does nothing.

The implementation of the program instrumentation to perform prefix-based
tracing is publicly available from https://github.com/mistupv/cauder.

https://github.com/mistupv/cauder
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5 Concluding Remaks

In this work, we have formalized the notion of prefix-based tracing, an essential
component of state-space exploration methods, in the context of a message-
passing concurrent language that can be seen as a subset of Erlang. We have
proved that prefix-based tracing indeed subsumes traditional tracing and re-
play. Furthermore, we have implemented this operation by means of a program
instrumentation which is parametric on the given input log.

We consider several interesting avenues for future work. On the one hand,
we plan to extend prefix-based tracing to also consider several built-in’s of the
Erlang language that involve shared-memory concurrency. This extension will
significantly extend the class of considered programs. On the other hand, an ex-
perimental evaluation will be carried over to determine the overhead introduced
by the program instrumentation.
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