
A Finite Representation of the Narrowing Space?

Naoki Nishida1 and Germán Vidal2

1 Graduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, 4648603 Nagoya, Japan,

nishida@is.nagoya-u.ac.jp
2 MiST, DSIC, Universitat Politècnica de València

Camino de Vera, s/n, 46022 Valencia, Spain
gvidal@dsic.upv.es

Abstract. Narrowing basically extends rewriting by allowing free vari-
ables in terms and by replacing matching with unification. As a con-
sequence, the search space of narrowing becomes usually infinite, as in
logic programming. In this paper, we introduce the use of some operators
that allow one to always produce a finite graph that still represents all
the narrowing derivations. Furthermore, we introduce a novel, compact
equational representation of the (possibly infinite) answers computed
by narrowing for a given initial term. Both the finite graphs and the
equational representation of the computed answers might be useful in a
number of areas, like program comprehension, static analysis, program
transformation, etc.

1 Introduction

The narrowing relation [27], originally introduced in the context of theorem
proving, was later adopted as the operational semantics of so called functional
logic programming languages (like Curry [15]). Basically, narrowing extends term
rewriting by allowing terms with variables and replacing matching with unifica-
tion. Therefore, narrowing has many similarities with the SLD resolution prin-
ciple of logic programming. Indeed, both narrowing and SLD resolution usually
produce an infinite search space, i.e., an infinite tree-like structure. Currently,
narrowing is regaining popularity in a number of areas other than functional
logic programming, like protocol verification [10, 17], model checking [8, 11], par-
tial evaluation [1, 26], refining methods for proving the termination of rewriting
[5, 6], etc. In many—if not all—of these applications, producing a finite rep-
resentation—usually in the form of a finite graph—of the narrowing space is
essential.

The generation of a finite representation of the narrowing space has been
tackled, e.g., by partial evaluation techniques (see, e.g., [1]). Here, some sub-
sumption and abstraction operators are introduced in order to stop potentially
infinite derivations. However, no previous work has formally considered how the
? This work has been partially supported by the Generalitat Valenciana under grant

PROMETEO/2011/052.

r ≈ f(x)
{x 7→0}

~~~~~~ {x 7→s(x′)}
$$JJJJ

r ≈ 0

{r 7→0} ��

r ≈ g(f(x′))

��
true . . .∞ . . .

r ≈ f(x)
{x 7→0}

{{wwww {x 7→s(x′)}
))SSSSSSS

r ≈ 0

{r 7→0}
��

r ≈ g(f(x′))
����

true r ≈ g(r′) & r′ ≈ f(x′)

qy llllll
llllll

%-SSSSSS
SSSSSS

r ≈ g(r′)

{r′ 7→s(0)} ��

r′ ≈ f(x′)

{r′ 7→r,x′ 7→x}
qq

r ≈ s(0)

{r 7→r′} ��
true

(a) (b)

Fig. 1. Building a finite representation of the narrowing space for f(x).

use of subsumption and abstraction operators can be used to construct finite
narrowing trees that still represent all possible derivations. In this work, we
present a new approach to produce a finite narrowing tree for any term. For this
purpose, we introduce two basic operators: splitting and flattening. Splitting a
conjunction like e1 & e2 implies the parallel evaluation of the conjuncts e1 and
e2. On the other hand, flattening an equation e returns a conjunction of the form
e|p ≈ x & e[x]p, where the subterm e|p of e is replaced by a fresh variable x in
e and a new equation is added. These two operations suffice to always produce
a finite representation of the narrowing space.

Example 1. Consider the following simple program (a term rewriting system):

R = {f(0)→ 0, f(s(x))→ g(f(x)), g(s(0))→ s(0)}

where natural numbers are built using the constructors 0 and s( ). Given the
initial equation r ≈ f(x), the narrowing space using an innermost strategy is
infinite, as shown in Figure 1 (a), where the terms selected to be narrowed are
underlined. Even by using some sort of memoization (as in [4]), where variants
of a previously narrowed term are not unfolded, we still get an infinite narrowing
space. In contrast, by using flattening (depicted with a double line) and splitting
(depicted with a double arrow), we can obtain a finite representation of the
narrowing space that still represents all the possible narrowing derivations, as
shown in Figure 1 (b), where dotted arrows are used to point to a previous
variant of a term or equation.

Designing a technique for producing finite narrowing trees can be useful in many
different areas. For instance, one can use them to better understand the pro-
gram’s control flow, to analyze weak termination,3 to detect subtrees that will

3 A TRS is weakly terminating if, for any term, there is at least one terminating
derivation [13].



never produce a computed answer (which is useful, e.g., in the context of the
more specific transformation recently introduced in [22]), and so forth. In this
paper, we present the building blocks for designing such techniques.

Furthermore, we also introduce a novel, compact equational representation
of the (possibly infinite) answers computed by narrowing for a given initial term.
In particular, we only need three operators:

– standard composition (·),
– alternative (+), that represents the union of sets of substitutions, and
– parallel composition (⇑), that denotes the unification on sets of substitutions.

The precise definitions will be introduced in Section 4.2. Using these operators,
we are able to produce finite and compact representations for the computed
answers of a term. For instance, the set of computed answers Γf(x) associated to
the narrowing tree depicted in Figure 1 can be succinctly represented by

Γf(x) = {x 7→ 0, r 7→ 0}
+ {x 7→ s(x′)} · ({r 7→ s(0), r′ 7→ s(0)} ⇑ {r′ 7→ r, x′ 7→ x} · Γf(x))

Interestingly, one can easily see that there is no solution to

{r 7→ s(0), r′ 7→ s(0)}⇑ {r′ 7→ r, x′ 7→ x} · Γf(x)

since {r 7→ s(0), r′ 7→ s(0)} maps r′ to s(0) while {r′ 7→ r, x′ 7→ x} · Γf(x) can
only bind r′ to 0 (because the only non-recursive solution of Γf(x) binds r to 0),
and s(0) and 0 clearly do not unify. Therefore, one can conclude that the only
solution is {x 7→ 0, r 7→ 0} despite the fact that the narrowing tree is infinite.
Here, this was already obvious from the inspection of the narrowing tree. In
general, however, our equational representation may be useful to analyze the
computed answers of more complex programs.

This paper is organized as follows. In Section 2, we briefly review some notions
and notations of term rewriting and narrowing. Section 3 presents some results on
the compositionality of narrowing, introduces the flattening operator and proves
its correctness. Section 4 then presents our method to produce finite narrowing
trees by using subsumption, constructor decomposition, flattening, and splitting.
We also introduce an equational representation for the computed answers in this
section. Finally, Section 6 concludes and points out some directions for future
research.

2 Preliminaries

We assume familiarity with basic concepts of term rewriting and narrowing. We
refer the reader to, e.g., [7], [24], and [14] for further details.

Terms and Substitutions. A signature F is a set of function symbols. Given a
set of variables V with F ∩ V = ∅, we denote the domain of terms by T (F ,V).
We assume that F always contains at least one constant f/0. We use f, g, . . . to



denote functions and x, y, . . . to denote variables. Positions are used to address
the nodes of a term viewed as a tree. A position p in a term t is represented by a
finite sequence of natural numbers, where ε denotes the root position. The set of
positions of a term t is denoted by Pos(t). We let t|p denote the subterm of t at
position p and t[s]p the result of replacing the subterm t|p by the term s. Var(t)
denotes the set of variables appearing in t. A term t is ground if Var(t) = ∅.

A substitution σ : V 7→ T (F ,V) is a mapping from variables to terms such
that Dom(σ) = {x ∈ V | x 6= σ(x)} is its domain. Substitutions are extended
to morphisms from T (F ,V) to T (F ,V) in the natural way. We denote the ap-
plication of a substitution σ to a term t by tσ rather than σ(t). The identity
substitution is denoted by id. A variable renaming is a substitution that is a
bijection on V. A substitution σ is more general than a substitution θ, denoted
by σ 6 θ, if there is a substitution δ such that δ · σ = θ, where “·” denotes
the composition of substitutions (i.e., σ · θ(x) = (xθ)σ = xθσ). A substitution
σ is idempotent if σ · σ = σ. The restriction θ |̀V of a substitution θ to a set of
variables V is defined as follows: xθ |̀V = xθ if x ∈ V and xθ |̀V = x otherwise. We
say that θ = σ [V ] if θ |̀V = σ |̀V .

A term t2 is an instance of a term t1 (or, equivalently, t1 is more general
than t2), in symbols t1 6 t2, if there is a substitution σ with t2 = t1σ. Two
terms t1 and t2 are variants (or equal up to variable renaming) if t1 = t2ρ for
some variable renaming ρ. A unifier of two terms t1 and t2 is a substitution σ
with t1σ = t2σ. This notion is naturally extended to a set of equations: σ is a
unifier of a set of equations {s1 = t1, . . . , sn = tn} if siσ = tiσ for i = 1, . . . , n;
furthermore, σ is the most general unifier of {s1 = t1, . . . , sn = tn}, denoted by
mgu({s1 = t1, . . . , sn = tn}) if, for every other unifier θ of {s1 = t1, . . . , sn = tn},
we have that σ 6 θ.

TRSs and Rewriting. A set of rewrite rules l → r such that l is a nonvariable
term and r is a term whose variables appear in l is called a term rewriting
system (TRS for short); terms l and r are called the left-hand side and the
right-hand side of the rule, respectively. We restrict ourselves to finite signatures
and TRSs. Given a TRS R over a signature F , the defined symbols DR are
the root symbols of the left-hand sides of the rules and the constructors are
CR = F \ DR. Constructor terms of R are terms over CR and V, i.e., T (CR,V).
We omit R from DR and CR if it is clear from the context. A substitution σ is a
constructor substitution (of R) if xσ ∈ T (CR,V) for all variables x. A TRS R is
a constructor system if the left-hand sides of its rules have the form f(s1, . . . , sn)
where si are constructor terms, i.e., si ∈ T (C,V), for all i = 1, . . . , n.

For a TRS R, we define the associated rewrite relation →R as the smallest
binary relation satisfying the following: given terms s, t ∈ T (F ,V), we have
s→R t iff there exist a position p in s, a rewrite rule l→ r ∈ R and a substitution
σ with s|p = lσ and t = s[rσ]p; the rewrite step is usually denoted by s→p,l→r t
to make explicit the position and rule used in this step. Moreover, if no proper
subterms of s|p are reducible, then we speak of an innermost reduction step,
denoted by s i→R t. The instantiated left-hand side lσ is called a redex. A term t



is called irreducible or in normal form w.r.t. a TRS R if there is no term s with
t →R s. A derivation is a (possibly empty) sequence of rewrite steps. Given a
binary relation →, we denote by →∗ its reflexive and transitive closure. Thus
t→∗R s means that t can be reduced to s in R in zero or more steps.

Narrowing. The narrowing relation [27] mainly extends term rewriting by re-
placing pattern matching with unification, so that terms containing logic (i.e.,
free) variables can also be reduced by non-deterministically instantiating these
variables. Formally, given a TRS R and two terms s, t ∈ T (F ,V), we have that
s ;R t is a narrowing step iff there exist4

– a nonvariable position p of s,
– a variant l→ r of a rule in R,
– a substitution σ = mgu({s|p = l}),

and t = (s[r]p)σ. We usually write s ;p,l→r,θ t (or simply s ;θ t) to make
explicit the position, rule, and substitution of the narrowing step. Moreover,
if s|p contains no proper narrowable subterms, then we speak of an innermost
narrowing step (see, e.g., [12]), denoted by s

i
;p,l→r,θ t. Also, when there are

several possible innermost narrowing steps, we consider the leftmost one, i.e., we
consider a leftmost innermost narrowing strategy in this paper.

A narrowing derivation t0 ;∗σ tn denotes a sequence of narrowing steps
t0 ;σ1 · · ·;σn

tn with σ = σn · · · · ·σ1 (if n = 0 then σ = id). Given a narrowing
derivation s ;∗σ t with t a constructor term, we say that σ is a computed answer
for s. We say that a substitution is normalized w.r.t. narrowing (and R) if every
variable in the domain is replaced by a term that is not narrowable in R. A
well-known result for innermost narrowing in constructor systems states that
only substitutions normalized w.r.t. narrowing are computed.

Example 2. Consider the TRS

R =
{

add(0, y)→ y (R1)
add(s(x), y)→ s(add(x, y)) (R2)

}
defining the addition add/2 on natural numbers built from 0/0 and s/1. Given
the term add(x, s(0)), we have infinitely many narrowing derivations starting
from add(x, s(0)), e.g.,

add(x, s(0)) ;ε,R1,{x 7→0} s(0)
add(x, s(0)) ;ε,R2,{x 7→s(y1)} s(add(y1, s(0))) ;1,R1,{y1 7→0} s(s(0))
. . .

with computed answers {x 7→ 0}, {x 7→ s(0)}, etc.

4 We consider the so called most general narrowing, i.e., the mgu of the selected sub-
term and the left-hand side of a rule—rather than an arbitrary unifier—is computed
at each narrowing step.



3 Compositionality and Flattening

The compositionality property can be simply formalized at the level of equations,
i.e., narrowing is compositional when the computed answers of e1 & e2 can
be obtained from the computed answers of e1 and e2, where “&” denotes the
Boolean conjunction operator. As for the flattening operation, given an equation
x ≈ f(g(y)),5 its flattening returns, e.g., x′ ≈ g(y) & x ≈ f(x′), where x′ is a
fresh variable. Therefore, flattening can be used to distribute the narrowing tasks
among different equations.

In principle, compositionality holds for any narrowing strategy that fulfills
the following conditions:

– Independence of the context. This is the case, for instance, of unrestricted
narrowing, basic narrowing, innermost narrowing, etc. Lazy or needed nar-
rowing, in contrast, are not independent of the context because, given an
expression s[t]p, we cannot determine wheter t should be narrowed (and to
what extent) without looking at the context s[ ]p.

– Terms introduced by instantiation should not be narrowable. This is the
case, for instance, of basic narrowing, innermost narrowing, lazy and needed
narrowing (for left-linear constructor systems), etc. This is not the case of
unrestricted narrowing though.

In the following, for simplicity, we will focus on (unconditional) innermost nar-
rowing (though other narrowing strategies would also be equally appropriate,
e.g., basic narrowing). Furthermore, some strategies not fulfilling the above con-
ditions, like lazy and needed narrowing, can also be proved compositional by
restricting the narrowing derivations to head normal form (so that they become
essentially independent of the context).

In this paper, we consider the usual definitions for syntactic equality Req =
{x ≈ x → true} and conjunction R& = {true & x → x, false & x → false}.
Therefore, narrowing deals with equations and conjunctions as ordinary terms.
Sometimes we call such terms equational terms to make it explicit that they
contain occurrences of “≈” and/or “&”. In the following, we assume that every
TRS implicitly includes the rules of Req and R&.

Here, we only aim at preserving the answers computed in successful deriva-
tions, i.e., derivations ending with a constructor term (true, when the initial term
is an equation or a conjunction of equations).

Definition 3 (success set). Let R be a constructor TRS and let t be a term.
We define the success set SR(t) of t in R as follows:

SR(t) = {σ |̀Var(t)| t
i

;∗σ c in R and c ∈ T (C,V) is a constructor term}

Observe that function S does not return the computed normal forms. Never-
theless, we can still get the computed normal form as follows: given a term t,

5 Here, “≈” is a binary symbol to denote syntactic equality on terms, see below.



we consider an initial equation of the form x ≈ t, where x is a fresh variable
not occurring in t; therefore, x will be bound to the normal form of t in any
successful derivation (i.e., any derivation that ends with true).

Let us now recall the definition of parallel composition of substitutions, de-
noted by ⇑ in [16, 25]. Informally speaking, this operation corresponds to the
notion of unification generalized to substitutions. Here, θ̂ denotes the equational
representation of a substitution θ, i.e., if θ = {x1 7→ t1, . . . , xn 7→ tn} then
θ̂ = {x1 = t1, . . . , xn = tn}.

Definition 4 (parallel composition [25]). Let θ1 and θ2 be two idempotent
substitutions. Then, we define ⇑ as follows:

θ1 ⇑ θ2 =
{

mgu(θ̂1 ∪ θ̂2) if θ̂1 ∪ θ̂2 has a solution (a unifier)
fail otherwise

Parallel composition is extended to sets of substitutions in the natural way:

Θ1 ⇑ Θ2 = {θ1 ⇑ θ2 | θ1 ∈ Θ1, θ2 ∈ Θ2, θ1 ⇑ θ2 6= fail}

Now, we state the main compositional result for innermost narrowing:

Theorem 5. Let R be a constructor TRS. Let e1 & e2 be an equational term.
Then, we have SR(e1 & e2) = SR(e1) ⇑ SR(e2) up to variable renaming.

As a useful consequence of the above compositionality result, we can state the
following corollary:

Corollary 6. Let R be a constructor TRS. Let e1 & e2 be an equational term.
Then, we have SR(e1 & e2) = SR(e2 & e1) up to variable renaming.

In practice, this result implies that innermost narrowing can select the equations
to be narrowed in any order (and not necessarily in a left-to-right order) while
preserving the computed answers. This is equivalent to the independence of the
selection rule of logic programming.

Now, we recall the flattening transformation (called unfolding in [23]) that
will become useful in the next section, and prove its correctness.

Definition 7 (flattening). Let e be an equational term. Then, we say that
x ≈ e|p & e[x]p is a flattening of e, with p ∈ Pos(e) and p 6= ε.

The following property states the correctness of the flattening operation:

Theorem 8. Let R be a constructor TRS. Let e be an equational term and
e′ be a flattening of e. Then, we have SR(e) = SR(e′) [Var(e)] up to variable
renaming.

4 A Finite Representation of the Narrowing Space

Now, we introduce a framework to obtain a finite representation of a (possibly
infinite) narrowing space. Then, given a finite narrowing tree, we also present a
method to extract an equational representation of the associated success set.



4.1 Construction of Finite Narrowing Trees

We proceed as in the construction of a standard narrowing tree, but we also
introduce some new operators in order to ensure that the tree can be kept finite.

Definition 9 (extended narrowing tree). Let R be a constructor TRS and
t be a term. An extended narrowing tree for t in R is a directed rooted node-
and edge-labeled graph τ built as follows:

– the root node of τ is labeled with x ≈ t, where x is a fresh variable not
occuring in t;

– if a node is labeled with a term that cannot be further narrowed, it is con-
sidered a leaf; moreover, we label this node with fail when it is not true (to
make it explicit that this is a failing derivation);

– subsumption: if a node is labeled with a term e′ that is a variant of a previous
node e in the same root-to-leaf derivation, i.e., e′ϑ = e, it is also considered
a leaf, and we add an implicit edge between these nodes labeled with ϑ;6

– constructor decomposition: if a node is labeled with y ≈ c(t1, . . . , tn) & e
(c ∈ C), we add an edge to a node y1 ≈ t1 & . . . & yn ≈ tn & e, with
y1, . . . , yn fresh variables, and the edge is labeled with {y 7→ c(y1, . . . , yn)};

– otherwise, we expand (don’t care nondeterministically) the node using one of
the following rules:
narrowing: we have an output edge labeled with σ from a node e to a node e′

for all innermost narrowing steps e i
;σ e

′;
flattening: there is an output edge from a node e to a node y ≈ e|p & e[y]p,

where y is a fresh variable not occurring anywhere in the tree;
splitting: we have output edges from a node labeled with a term of the form

e1 & · · · & en−1 & en to the nodes labeled with e1, . . . , en−1, and en.

The operations considered in the previous definition can also be found in the
literature (perhaps with some slightly different definitions). For instance, flat-
tening is introduced in [23] (where it is called unfolding); subsumption is used in
many different contexts (e.g., [4, 1]); (constructor) decomposition rules are used
in different narrowing calculi (see, e.g., [18]); finally, splitting is considered when
proving compositionality results (e.g., [3]) and in the partial evaluation of logic
programs [9].

The relevance of the notion of extended narrowing tree is that, thanks to the
use of the rules of flattening, constructor decomposition,7 and splitting, one can
always produce a tree with finitely many non-variant nodes. We do not provide
a formal proof of this claim, but it is an easy consequence of the fact that using
flattening—which involves generalizing a subterm—and splitting one can keep
the set of non-variant terms finite. The correctness of the extended narrowing
trees, i.e., the fact that they still represent all possible narrowing derivations, is
an easy consequence of the results in Section 3.
6 We consider these edges implicit to keep the data structure a tree.
7 The rule of constructor decomposition is mainly introduced for simplicity, but could

be replaced by a sequence of flattening steps.



r ≈ f(x, y)

{x 7→0,y 7→y′}

ttiiiiiiiiiiiiiiiiii
{x 7→s(x′),

y 7→y′′} ��

{x 7→s(x′),

y 7→y′′′}

**VVVVVVVVVVVVVVVVVV

r ≈ y′

{r 7→y′}

��

r ≈ f(x′, y′′)

{x′ 7→x,

y′′ 7→y}

UU

r ≈ f(y′′′, x′)

{y′′′ 7→x,x′ 7→y}ss

true

Fig. 2. Finite narrowing tree for f(x, y).

In this paper, we do not introduce a particular strategy for automating the
construction of finite extended narrowing trees. Some strategies can produce
very compact representations by applying constructor decomposition/flattening
and splitting as much as possible. However, in this case, we also get less accurate
results in general. Other strategies may try to avoid breaking down a term as
long as possible. Here, one should be very careful to avoid entering an infinite
loop. The interested reader can find suitable strategies, e.g., in the literature
of narrowing-driven partial evaluation [2, 1]. Similar strategies could be defined
using the above operations.

In the following, we will use these graphical conventions when depicting the
steps of an extended narrowing tree:

– narrowing and constructor decomposition: (labeled) solid arrow (−→);
– subsumption: (labeled) dotted arrow ( //);
– flattening: double line (==);
– splitting: double arrow (=⇒).

By abuse of notation, we often use in the text e −→∗σ e′ to denote a path in
the tree, no matter the type of rules applied from node e to node e′ (except
subsumption), where σ is the composition of the substitutions in the labeled
edges along this path (if any, and id otherwise).

Let us now illustrate the construction of finite extended narrowing trees with
some examples. Let us note that rule variables are always renamed with fresh
names; this is mandatory to produce correct equations in the next section.

Example 10. Let us consider the following (non confluent) TRS R = {f(0, y)→
y, f(s(x), y) → f(x, y), f(s(x), y) → f(y, x)}. Given the initial term f(x, y), the
narrowing space is clearly infinite because of the recursive calls to f. Here, a
couple of subsumption steps suffice to get a finite extended narrowing tree, as
shown in Figure 2.

Example 11. Consider the TRS R={f(0, y)→ y, f(s(x), y)→ c(f(x, y), f(y, x))}
and the initial term f(x, y). In this case, subsumption does not suffice and con-
structor decomposition and splitting becomes necessary, as shown in Figure 3.
This is a simple pattern that could be routinely applied to all constructor-rooted
terms in order to get a finite representation of the narrowing space.



r ≈ f(x, y)
{x7→0,y 7→y′}

xxqqqqqqqqq {x7→s(x′),y 7→y′′}

**UUUUUUUUUUUUUU

r ≈ y′

{r 7→y′}
��

r ≈ c(f(x′, y′′), f(y′′, x′))

{r 7→c(r′,r′′)}
��

true r′ ≈ f(x′, y′′) & r′′ ≈ f(y′′, x′)

px iiiiiiiiiiiii

iiiiiiiiiiiii

&.UUUUUUUUUUUUU

UUUUUUUUUUUUU

r′ ≈ f(x′, y′′)

{r′ 7→r,

x′ 7→x,

y′′ 7→y}

OO

r′′ ≈ f(y′′, x′)

{r′′ 7→r,y′′ 7→x,x′ 7→y}
qq

Fig. 3. Finite narrowing tree for f(x, y).

r ≈ x ∗ y
{x 7→0,y 7→y′}

uulllllll {x 7→s(x′),y 7→y′′}
++WWWWWWWWWW

r ≈ 0
{r 7→0}

��

r ≈ y′′ + (x′ ∗ y′′)
����

true r ≈ y′′ + r′ & r′ ≈ x′ ∗ y′′

ow ggggggggg
ggggggggg

'/WWWWWWWWW
WWWWWWWWW

r ≈ y′′ + r′
{y′′ 7→0,r′ 7→r′′}

vvmmmmmm {y′′ 7→s(y′′′),r′ 7→r′′′}
++WWWWWWWWW r′ ≈ x′ ∗ y′′

{r′ 7→r,x′ 7→x,y′′ 7→y}rr

r ≈ r′′

{r 7→r′′} ��

r ≈ s(y′′′ + r′′′)

{r 7→s(r′′′′)}��
true r′′′′ ≈ y′′′ + r′′′{r′′′′ 7→r,y′′′ 7→y′,r′′′ 7→r′}

WW

Fig. 4. Finite narrowing tree for x ∗ y.

Observe that the constructor decomposition step is not really needed and
could be mimicked by performing two flattening steps and, then, reducing the
last equation as follows:

r ≈ c(f(x′, y′′), f(y′′, x′))
=== r′ ≈ f(x′, y′′) & r ≈ c(r′, f(y′′, x′))
=== r′ ≈ f(x′, y′′) & r′′ ≈ f(y′′, x′) & r ≈ c(r′, r′′)
−→{r 7→c(r′,r′′)} r

′ ≈ f(x′, y′′) & r′′ ≈ f(y′′, x′) & true

However, we prefer to keep the constructor decomposition steps for simplicity.

Example 12. Finally, consider the following TRS R = {0 + y → y, s(x) + y →
s(x + y), 0 ∗ y → 0, s(x) ∗ y → y + (x ∗ y)}. Given the initial term x ∗ y, both
flattenning and splitting are necessary to produce a finite extended narrowing
tree, as shown in Figure 4.



4.2 Success Set Equations

In this section, we introduce an equational notation for representing the success
set of a term, that we call its success set equations. Here, we consider the following
three operators:

– Composition (·). For simplicity, besides the standard composition of substitu-
tions, we also consider its extension to sets of substitutions as follows. Given
a set of substitutions Θ and a substitution σ, we let σ · Θ = {σ · θ | θ ∈ Θ}
and Θ · σ = {θ · σ | θ ∈ Θ}.

– Alternative (+). In our context, an expression like ss1 + ss2 denotes the
union of the success sets denoted by ss1 and ss2. Again, for simplicity, we
let a substitution denote a singleton set with this substitution.

– Parallel composition (⇑). This is the standard parallel composition operator
introduced in Definition 4.

As for the operator precedence, we assume that composition has a higher priority
than parallel composition, which has a higher priority than alternative.

Now, we introduce a technique to extract the success set equations of a term
from a given (finite) extended narrowing tree. Loosely speaking, substitutions
along derivations with narrowing steps are just composed. Flattening and con-
structor decomposition steps are ignored. Splitting steps involve computing the
parallel composition of the success sets of the different branches. Finally, for
subsumption steps, we compose the current set with the substitution labeling
the step and, then, with the success set of the previous variant term.

In the following, we use the following notation. Given an extended narrowing
tree τ , we let root(τ) denote the root of τ . We also let τ ≡ (t →σ τ

′) denote
the fact that τ is rooted by term t and has a (possibly labeled) output edge
to a subtree τ ′. Moreover, we use the auxiliary function out(τ) that returns
the output edges from root(τ) (if any). E.g., let τ be the extended narrowing
tree of Figure 4; here, we have out(τ) = {r ≈ x ∗ y →{x 7→0,y 7→y′} τ1, r ≈
x ∗ y →{x 7→s(x′),y 7→y′′} τ2}, where τ1 and τ2 are the subtrees rooted by r ≈ 0
and r ≈ y′′ + (x′ ∗ y′′), respectively. Finally, we let subtrees(τ) denote the set of
subtrees of a tree τ that are obtained by partitioning τ into those subtrees that
are rooted by a term with an incoming subsumption edge. E.g., for the tree τ of
Figure 4, subtrees(τ) returns two subtrees, one rooted by r ≈ x ∗ y and another
one rooted by r ≈ y′′ + r′.

Definition 13 (success set equations). Let τ be a finite extended narrowing
tree for a term t. Let T = subtrees(τ). Then, we produce a success set equation
Γt = SF(τ ′) for each tree in τ ′ ∈ T with root(τ ′) = t, where the auxiliary
function SF is defined as follows:

SF(τ) =



id if τ ≡ true
fail if τ ≡ fail (a failing derivation)
σ · Γt′ if τ ≡ ( t σ

// τ ′ ), t′ = root(τ ′)
SF(τ ′) if τ ≡ (e == τ ′)
SF(τ1) ⇑ · · · ⇑ SF(τn) if out(τ) = {e⇒ τi | i = 1, . . . , n}
σ1 · SF(τ1) + · · ·+ σn · SF(τn) if out(τ) = {e→σ τi | i = 1, . . . , n}



For clarity, when no confusion can arise, we often label function Γ with term t
rather than with the equation r ≈ t.

Example 14. Given the extended narrowing tree of Figure 2, we produce the
following success set equation:

Γf(x,y) = {x 7→ 0, y 7→ y′, r 7→ y′}
+ {x 7→ s(x′), y 7→ y′′} · ({x′ 7→ x, y′′ 7→ y} · Γf(x,y))
+ {x 7→ s(x′), y 7→ y′′′} · ({y′′′ 7→ x, x′ 7→ y} · Γf(x,y))

Informally speaking, the (infinite) solutions of this equation can be enumerated
iteratively as follows. One starts with Γ 0

f(x,y) = {}. Then, we compute the next
iteration i > 0 as follows:

Γ if(x,y) = {x 7→ 0, y 7→ y′, r 7→ y′}
+ {x 7→ s(x′), y 7→ y′′} · ({x′ 7→ x, y′′ 7→ y} · Γ i−1

f(x,y))
+ {x 7→ s(x′), y 7→ y′′′} · ({y′′′ 7→ x, x′ 7→ y} · Γ i−1

f(x,y))

Therefore, we have the following infinite sequence8

Γ 1
f(x,y) = {{x 7→ 0, y 7→ y′}}
Γ 2

f(x,y) = Γ 1
f(x,y) ∪ {{x 7→ s(0), y 7→ y′}, {x 7→ s(y′), y 7→ 0}}

Γ 3
f(x,y) = Γ 2

f(x,y) ∪ {{x 7→ s(s(0)), y 7→ y′}, {x 7→ s(s(y′)), y 7→ 0},
{x 7→ s(y′), y 7→ s(0)}, {x 7→ s(0), y 7→ s(y′)}}

. . .

In the following, we denote by sols(Γt) the (possibly infinite) set of solutions
of the success set equation Γt for some term t. Let us consider a set of success
set equations Γt1 = r1, . . . , Γtn = rn associated to the narrowing derivations
starting from term t1. A procedure to enumerate the substitutions in sols(Γt1)
can proceed as follows:

1. Initialization. Γ 0
t1 = · · · = Γ 0

tn = { }.
2. Iterative process. for all i > 0, we compute the following sets:

Γ it1 = r1[Γt 7→ Γ i−1
t ] . . . Γ itn = rn[Γt 7→ Γ i−1

t ]

where rj [Γt 7→ Γ i−1
t ] denotes the expression that results from rj by replacing

every occurrence of Γt by Γ i−1
t , with j = 1, . . . , n and t ∈ {t1, . . . , tn}.

Then, we have sols(Γt1) =
⋃
i>0

Γ it1 , where the Γ it1 are computed as above.

We do not formally prove the correctness of the above procedure for com-
puting sols(Γt), but it is rather straightforward.

8 We restrict substitutions to Var(f(x, y)) for conciseness.



Example 15. Given the extended narrowing tree shown in Figure 3, we produce
the following success set equation:

Γf(x,y) = {x 7→ 0, y 7→ y′, r 7→ y′}
+ {x 7→ s(x′), y 7→ y′′, r 7→ c(r′, r′′)} · ({r′ 7→ r, x′ 7→ x, y′′ 7→ y} · Γf(x,y)

⇑
{r′′ 7→ r, y′′ 7→ x, x′ 7→ y} · Γf(x,y))

Computing the success set is slightly more difficult now since it involves parallel
compositions. The sequence of success sets is as follows:

Γ 0
f(x,y) = { }
Γ 1

f(x,y) = {{x 7→ 0, y 7→ y′, r 7→ y′}}
Γ 2

f(x,y) = Γ 1
f(x,y) ∪ {{x 7→ s(x′), y 7→ y′′, r 7→ c(r′, r′′)}

·({r′ 7→ y′, x′ 7→ 0, y′′ 7→ y′, x 7→ 0, y 7→ y′, r 7→ y′}
⇑ {r′′ 7→ y′, y′′ 7→ 0, x′ 7→ y′, x 7→ 0, y 7→ y′, r 7→ y′})}

= Γ 1
f(x,y) ∪ {{x 7→ s(x′), y 7→ y′′, r 7→ c(r′, r′′)}

·{r′ 7→ 0, r′′ 7→ 0, x′ 7→ 0, y′′ 7→ 0, x 7→ 0, y 7→ 0, r 7→ 0}}
= Γ 1

f(x,y) ∪ {{x 7→ s(0), y 7→ 0, r 7→ c(0, 0)}}
. . .

Example 16. Given the extended narrowing tree shown in Figure 1, we produce
the following success set equation:

Γf(x) = {x 7→ 0, r 7→ 0}
+ {x 7→ s(x′)} · ({r′ 7→ s(0), r 7→ r′} ⇑ {r′ 7→ r, x′ 7→ x} · Γf(x))

The sequence of success sets is as follows:

Γ 0
f(x) = { }
Γ 1

f(x) = {{x 7→ 0, r 7→ 0}}
Γ 2

f(x) = Γ 1
f(x)

∪{{x 7→ s(x′)} · ({r′ 7→ s(0), r 7→ r′} ⇑ {r′ 7→ 0, x′ 7→ 0, x 7→ 0, r 7→ 0})}
= Γ 1

f(x)

Thus, the success set equation denote the singleton set {{x 7→ 0, r 7→ 0}}.

Example 17. Given the extended narrowing tree shown in Figure 4, we produce
the following success set equations:

Γx∗y = {x 7→ 0, y 7→ y′, r 7→ 0}
+ {x 7→ s(x′), y 7→ y′′} · (Γy′′+r′ ⇑ {r′ 7→ r, x′ 7→ x, y′′ 7→ y} · Γx∗y)

Γy′′+r′ = {y′′ 7→ 0, r′ 7→ r′′, r 7→ r′′}
+ {y′′ 7→ s(y′), r′ 7→ r, r 7→ s(r), r′′′′ 7→ r, y′′′ 7→ y′, r′′′ 7→ r′} · Γy′′+r′

The success set is the obvious one for addition and multiplication.

The correctness of success set equations can be stated as follows:



Theorem 18. Let R be a constructor TRS and let t be a term. Let τ be a
finite extended narrowing tree for t in R rooted with r ≈ t, and let Γr≈t be its
associated success set equation. Then, we have SR(r ≈ t) = sols(Γr≈t) up to
variable renaming.

5 Related Work

There are basically two closely related lines of research. On the one hand, we
have a work by Antoy and Ariola [4] that aims at finding a finite representation
of the (possibly infinite) narrowing space. In contrast to our approach, however,
they only consider subsumption. Therefore, there is no guarantee that the rep-
resentation of the narrowing space is going to be finite. They also propose a
finite representation inspired by regular expressions to denote a (possibly infi-
nite) enumeration of computed answers. This is somehow similar to our success
set equations; nevertheless, our equations are more complex since they may also
include parallel compositions.

On the other hand, there are a number of papers on the so-called narrowing-
driven partial evaluation (see [1] and references herein) that also require the
construction of a finite representation of the narrowing space. In contrast to [4],
other operators like generalization (i.e., replacing some subterms by fresh vari-
ables) and splitting are used to ensure that the representation of the narrowing
space is finite. However, no single narrowing tree is constructed, but a sequence of
(possibly incomplete) narrowing trees, which are then used to extract the resid-
ual program (a sequence of resultants associated to each root-to-leaf narrowing
derivation). The correctness of the transformation is proved for some narrowing
strategies (under the closedness condition of the narrowing trees). However, no
general properties are proved for the different operators.

Our approach can be seen as a combination of the above lines of research. We
aim at constructing finite representations of the narrowing space, as in [4], but
we also allow the use of powerful operators like flattening and splitting, similarly
to the works on narrowing-driven partial evaluation.

6 Conclusion and Future Work

In this work, we have introduced a framework that provides the building blocks
that are required to produce a finite representation of the (possibly infinite)
narrowing space. For this purpose, we have considered three simple operations:
constructor decomposition, flattening and splitting, and have proved its correct-
ness. Then, we have introduced the notion of extended narrowing tree, where
the above operations can be applied to make the tree finite. Finally, we have in-
troduced a compact equational representation of the success set that follows the
structure of a finite extended narrowing tree. Let us note that our approach could
easily be transferred to other logic-based programming languages; in particular,
it should be straightforward to adapt it to definite logic programs.



Among the possible applications, one can consider the use of extended nar-
rowing trees and success set equations to better understand the program’s control
flow, to analyze weak termination [13], to detect subtrees that will never produce
a computed answer as in Example 1 (which could be useful, e.g., in the context of
the more specific transformation recently introduced in [22]), and so forth. This
work opens many possibilities for future work. In particular, we would like to
design fully automatic strategies for producing finite extended narrowing trees
(e.g., following the methods used in the context of narrowing-driven partial eval-
uation [1]). We find also interesting the definition of methods to automatically
analyze success set equations and infer useful properties that can be used in
other contexts (like the more specific transformation mentioned above, that is
currently being used for improving program inversion [20, 19, 21]).

Acknowledgements

We thank the anonymous reviewers for their useful comments to improve this
paper. Part of this research was done while the second author was visiting the
Sakabe/Sakai Lab at Nagoya University. Germán Vidal gratefully acknowledges
their hospitality and support.

References

1. Albert, E., Vidal, G.: The narrowing-driven approach to functional logic program
specialization. New Generation Computing 20(1), 3–26 (2002)

2. Alpuente, M., Falaschi, M., Vidal, G.: Partial Evaluation of Functional Logic Pro-
grams. ACM TOPLAS 20(4), 768–844 (1998)

3. Alpuente, M., Falaschi, M., Vidal, G.: Compositional analysis for equational Horn
programs. In: Levi, G., Rodŕıguez-Artalejo, M. (eds.) Algebraic and Logic Pro-
gramming, Lecture Notes in Computer Science, vol. 850, pp. 77–94. Springer Berlin
Heidelberg (1994)

4. Antoy, S., Ariola, Z.: Narrowing the Narrowing Space. In: Proc. of the 9th Int’l
Symposium on Programming Languages: Implementations, Logics, and Programs
(PLILP’97). pp. 1–15. Springer LNCS 1292 (1997)

5. Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs. The-
oretical Computer Science 236(1-2), 133–178 (2000)

6. Arts, T., Zantema, H.: Termination of Logic Programs Using Semantic Unifica-
tion. In: Proc. of the 5th Int’l Workshop on Logic Programming Synthesis and
Transformation (LOPSTR’95). pp. 219–233. Springer LNCS 1048 (1996)

7. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

8. Bae, K., Escobar, S., Meseguer, J.: Abstract Logical Model Checking of Infinite-
State Systems Using Narrowing. In: Proc. of the 24th International Conference on
Rewriting Techniques and Applications (RTA 2013). Lecture Notes in Computer
Science, Springer (2013), to appear

9. De Schreye, D., Glück, R., Jørgensen, J., Leuschel, M., Martens, B., Sørensen,
M.: Conjunctive Partial Deduction: Foundations, Control, Algorihtms, and Exper-
iments. Journal of Logic Programming 41(2&3), 231–277 (1999)



10. Escobar, S., Meadows, C., Meseguer, J.: A Rewriting-Based Inference System for
the NRL Protocol Analyzer and its Meta-Logical Properties. Theoretical Computer
Science 367(1-2), 162–202 (2006)

11. Escobar, S., Meseguer, J.: Symbolic Model Checking of Infinite-State Systems Us-
ing Narrowing. In: Proc. of RTA’07. pp. 153–168. Springer LNCS 4533 (2007)

12. Fribourg, L.: SLOG: a logic programming language interpreter based on clausal
superposition and rewriting. In: Proceedings of the Symposium on Logic Program-
ming (SLP’85). pp. 172–185. IEEE Press (1985)

13. Gnaedig, I., Kirchner, H.: Proving weak properties of rewriting. Theor. Comput.
Sci. 412(34), 4405–4438 (2011)

14. Hanus, M.: The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming 19&20, 583–628 (1994)

15. Hanus (ed.), M.: Curry: An integrated functional logic language (vers. 0.8.3). Avail-
able at http://www.curry-language.org (2012)

16. Hermenegildo, M., Rossi, F.: On the Correctness and Efficiency of Independent
And-Parallelism in Logic Programs. In: Lusk, E., Overbeck, R. (eds.) Proc. of the
1989 North American Conf. on Logic Programming. pp. 369–389. The MIT Press,
Cambridge, MA (1989)

17. Meseguer, J., Thati, P.: Symbolic Reachability Analysis Using Narrowing and its
Application to Verification of Cryptographic Protocols. Electronic Notes in Theo-
retical Computer Science 117, 153–182 (2005)

18. Middeldorp, A., Okui, S.: A deterministic lazy narrowing calculus. Journal of Sym-
bolic Computation 25(6), 733–757 (1998)

19. Nishida, N., Sakai, M., Sakabe, T.: Generation of inverse computation programs
of constructor term rewriting systems. IEICE Transactions on Information and
Systems J88-D-I(8), 1171–1183 (Aug 2005), in Japanese

20. Nishida, N., Sakai, M., Sakabe, T.: Partial inversion of constructor term rewriting
systems. In: Giesl, J. (ed.) Proceedings of the 16th International Conference on
Rewriting Techniques and Applications (RTA 2005). Lecture Notes in Computer
Science, vol. 3467, pp. 264–278. Springer (2005)

21. Nishida, N., Vidal, G.: Program inversion for tail recursive functions. In: Schmidt-
Schauß, M. (ed.) Proceedings of the 22nd International Conference on Rewriting
Techniques and Applications (RTA 2011). LIPIcs, vol. 10, pp. 283–298. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)

22. Nishida, N., Vidal, G.: Computing More Specific Versions of Conditional Rewriting
Systems. In: Albert, E. (ed.) Proc. of the 20th International Symposium on Logic-
Based Program Synthesis and Transformation (LOPSTR 2012). Lecture Notes in
Computer Science, vol. 7844, pp. 137–154. Springer (2013)

23. Nutt, W., Réty, P., Smolka, G.: Basic narrowing revisited. Journal of Symbolic
Computation 7, 295–317 (1989)

24. Ohlebusch, E.: Advanced topics in term rewriting. Springer-Verlag, London, UK
(2002)

25. Palamidessi, C.: Algebraic Properties of Idempotent Substitutions. In: Paterson, M.
(ed.) Proc. of 17th Int’l Colloquium on Automata, Languages and Programming.
pp. 386–399. Springer LNCS 443 (1990)

26. Ramos, J.G., Silva, J., Vidal, G.: Fast Narrowing-Driven Partial Evaluation for
Inductively Sequential Systems. In: Danvy, O., Pierce, B.C. (eds.) Proceedings of
the 10th ACM SIGPLAN International Conference on Functional Programming
(ICFP’05). pp. 228–239. ACM Press (2005)

27. Slagle, J.R.: Automated theorem-proving for theories with simplifiers, commuta-
tivity and associativity. Journal of the ACM 21(4), 622–642 (1974)


