A Hybrid Approach to Conjunctive Partial Deduction

Germán Vidal

Technical University of Valencia

Int'l Symp. on Logic-Based Program Synthesis and Transformation LOPSTR 2010

July 23-25, 2010

Castle of Hagenberg, Austria

Introduction

Partial evaluation

- input program and part of input data (static data)
- output specialized (residual) program

Partial evaluator
 - constructs a finite representation of all possible computations
 - extracts resultants from transitions

Optimization comes from

- compressing paths in the graph (linear speedups for loops)
- renaming of expressions (removes unnecessary symbols)

Introduction

Partial evaluation

- input program and part of input data (static data)
- output specialized (residual) program

Partial evaluator

- constructs a finite representation of all possible computations
- extracts resultants from transitions

Optimization comes from

- compressing paths in the graph (linear speedups for loops)
- renaming of expressions (removes unnecessary symbols)

Introduction

Partial evaluation

- input program and part of input data (static data)
- output specialized (residual) program

Partial evaluator

- constructs a finite representation of all possible computations
- extracts resultants from transitions

Optimization comes from

- compressing paths in the graph (linear speedups for loops)
- renaming of expressions (removes unnecessary symbols)

Conjunctive partial deduction

Input logic program P and a query Q_{0}
Initialization (instance of Q_{0})

The set is kept finite using

- generalization
- splitting

Conjunctive partial deduction

Input logic program P and a query Q_{0}
Initialization $\mathcal{S}=\left\{Q_{0}\right\} S=\left\{Q_{0}, Q_{3}, Q_{4}, Q_{5}\right\} S=\left\{Q_{0}, Q_{3}, Q_{4}, Q_{5}, Q_{6}\right\}$ (instance of Q_{0})

The set is kept finite using

- generalization
- splitting

Conjunctive partial deduction

Input logic program P and a query Q_{0}
Initialization $\mathcal{S}=\left\{Q_{0}\right\} S=\left\{Q_{0}, Q_{3}, Q_{4}, Q_{5}\right\} S=\left\{Q_{0}, Q_{3}, Q_{4}, Q_{5}, Q_{6}\right\}$

(instance of Q_{0})

The set is kept finite using

- generalization
- splitting

Conjunctive partial deduction

Input logic program P and a query Q_{0}
Initialization $S=\left\{Q_{0}\right\} \mathcal{S}=\left\{Q_{0}, Q_{3}, Q_{4}, Q_{5}\right\} S=\left\{Q_{0}, Q_{3}, Q_{4}, Q_{5}, Q_{6}\right\}$

(instance of Q_{0})

The set is kept finite using

- generalization
- splitting

Conjunctive partial deduction

Input logic program P and a query Q_{0}
Initialization $S=\left\{Q_{0}\right\} \mathcal{S}=\left\{Q_{0}, Q_{3}, Q_{4}, Q_{5}\right\} S=\left\{Q_{0}, Q_{3}, Q_{4}, Q_{5}, Q_{6}\right\}$

The set is kept finite using

- generalization
- splitting

Conjunctive partial deduction

Input logic program P and a query Q_{0}
Initialization $S=\left\{Q_{0}\right\} S=\left\{Q_{0}, Q_{3}, Q_{4}, Q_{5}\right\} \mathcal{S}=\left\{Q_{0}, Q_{3}, Q_{4}, Q_{5}, Q_{6}\right\}$

The set is kept finite using

- generalization
- splitting

Conjunctive partial deduction

Input logic program P and a query Q_{0}
Initialization $S=\left\{Q_{0}\right\} S=\left\{Q_{0}, Q_{3}, Q_{4}, Q_{5}\right\} \mathcal{S}=\left\{Q_{0}, Q_{3}, Q_{4}, Q_{5}, Q_{6}\right\}$

The set is kept finite using

- generalization
- splitting

This work

Original motivation:

- paralelizing partial evaluation?
- run time groundness and sharing information is essential

Current approaches not useful because

- run time information is not available (only PE time info)
- usual operations (instance and splitting) do not preserve groundness and sharing

Our approach:

- hybrid control issues (combines static analysis and online tests)
- run time groundness information available
- good starting point for paralelizing partial evaluation

This work

Original motivation:

- paralelizing partial evaluation?
- run time groundness and sharing information is essential

```
Current approaches not useful because
- run time information is not available (only PE time info)
- usual operations (instance and splitting) do not preserve groundness
and sharing
```

Our approach:

- hyhrid control issues (combines static analysis and online tests)
- run time groundness information available
- good starting point for paralelizing partial evaluation

This work

Original motivation:

- paralelizing partial evaluation?
- run time groundness and sharing information is essential

Current approaches not useful because

- run time information is not available (only PE time info)
- usual operations (instance and splitting) do not preserve groundness and sharing

Our approach:

- hybrid control issues (combines static analysis and online tests)
- run time groundness information available
- good starting point for paralelizing partial evaluation

This work

Original motivation:

- paralelizing partial evaluation?
- run time groundness and sharing information is essential

Current approaches not useful because

- run time information is not available (only PE time info)
- usual operations (instance and splitting) do not preserve groundness and sharing

Our approach:

- hybrid control issues (combines static analysis and online tests)
- run time groundness information available
- good starting point for paralelizing partial evaluation

Lightweight CPD

(1) Pre-processing

- call and success pattern analysis
- left-termination analysis
- identification of non-regular predicates
(2) Partial evaluation
- non-leftmost unfolding statically determined
- only a limited form of splitting (statically determined)
- no generalization (but might give up)
(3) Post-processing
- initially one-step renamed resultants
- post-unfolding transition compression to avoid intermediate calls

Lightweight CPD

(1) Pre-processing

- call and success pattern analysis
- left-termination analysis
- identification of non-regular predicates
(2) Partial evaluation
- non-leftmost unfolding statically determined
- only a limited form of splitting (statically determined)
- no generalization (but might give up)
(3) Post-processing
- initially one-step renamed resultants
- post-unfolding transition compression to avoid intermediate calls

Static analyses

Call and success pattern analysis (e.g., [Leuschel and Vidal, LOPSTR'08])

- for each predicate p / n, we get a set of patterns p / n : in \mapsto out
- e.g., append/3: $\{1,2\} \mapsto\{1,2,3\}$

```
append([],Y, Y).
append([X|R], Y, [X|S]): - append(R,Y,S).
```

ft-termination analysis

- determines if p / n terminates for call pattern in with Prolog's leftmost selection strategy
- e.g., append/3 left-terminates for call pattern $\{1\}$
- e.g., append $/ 3$ doesn't left-terminate for call pattern $\{2\}$

Static analyses

Call and success pattern analysis (e.g., [Leuschel and Vidal, LOPSTR'08])

- for each predicate p / n, we get a set of patterns p / n : in \mapsto out
- e.g., append/3: $\{1,2\} \mapsto\{1,2,3\}$

```
append([],Y, Y).
append([X|R], Y, [X|S]) : - append(R,Y,S).
```

Left-termination analysis

- determines if p / n terminates for call pattern in with Prolog's leftmost selection strategy
- e.g., append/3 left-terminates for call pattern $\{1\}$
- e.g., append $/ 3$ doesn't left-terminate for call pattern $\{2\}$

Strongly regular programs

Extends B-stratifiable programs [Hruza and Stepánek, TPLP 2004]:

- first, the call graph of the program is built
- predicate p / n is strongly regular if there is no

such that body contains two atoms in the same SCC as p / n
- a logic program is strongly regular if all predicates are

Property: SRP cannot produce infinitely growing conjunctions at PE time

Identifying non-regular predicates will become useful to decide how to split queries at partial evaluation time

Strongly regular programs

Extends B-stratifiable programs [Hruza and Stepánek, TPLP 2004]:

- first, the call graph of the program is built
- predicate p / n is strongly regular if there is no

such that body contains two atoms in the same SCC as p / n
- a logic program is strongly regular if all predicates are

Property: SRP cannot produce infinitely growing conjunctions at PE time

Identifying non-regular predicates will become useful to decide how to split queries at partial evaluation time

Strongly regular programs

Extends B-stratifiable programs [Hruza and Stepánek, TPLP 2004]:

- first, the call graph of the program is built
- predicate p / n is strongly regular if there is no

$$
p\left(t_{1}, \ldots, t_{n}\right) \leftarrow \text { body }
$$

such that body contains two atoms in the same SCC as p / n

- a logic program is strongly regular if all predicates are

Property: SRP cannot produce infinitely growing conjunctions at PE time

Identifying non-regular predicates will become useful to decide how to split queries at partial evaluation time

Strongly regular programs

Extends B-stratifiable programs [Hruza and Stepánek, TPLP 2004]:

- first, the call graph of the program is built
- predicate p / n is strongly regular if there is no

$$
p\left(t_{1}, \ldots, t_{n}\right) \leftarrow \text { body }
$$

such that body contains two atoms in the same SCC as p / n

- a logic program is strongly regular if all predicates are

Property: SRP cannot produce infinitely growing conjunctions at PE time

\square
Identifying non-regular predicates will become useful to decide how to split queries at nartial evaluation time

Strongly regular programs

Extends B-stratifiable programs [Hruza and Stepánek, TPLP 2004]:

- first, the call graph of the program is built
- predicate p / n is strongly regular if there is no

$$
p\left(t_{1}, \ldots, t_{n}\right) \leftarrow \text { body }
$$

such that body contains two atoms in the same SCC as p / n

- a logic program is strongly regular if all predicates are

Property: SRP cannot produce infinitely growing conjunctions at PE time

> Identifying non-regular predicates will become useful to decide how to split queries at partial evaluation time

Strongly regular programs

Extends B-stratifiable programs [Hruza and Stepánek, TPLP 2004]:

- first, the call graph of the program is built
- predicate p / n is strongly regular if there is no

$$
p\left(t_{1}, \ldots, t_{n}\right) \leftarrow \text { body }
$$

such that body contains two atoms in the same SCC as p / n

- a logic program is strongly regular if all predicates are

Property: SRP cannot produce infinitely growing conjunctions at PE time

Identifying non-regular predicates will become useful to decide how to split queries at partial evaluation time

Example (strongly regular)

applast(L, X, Last) : - append(L, [X], LX), last(Last, LX).
last(X, [X]).
last(X, $[\mathrm{H} \mid \mathrm{T}])$: $-\operatorname{last}(\mathrm{X}, \mathrm{T})$.
append([], L, L).
$\operatorname{append}([\mathrm{H} \mid \mathrm{L} 1], \mathrm{L} 2,[\mathrm{H} \mid \mathrm{L} 3]):-\operatorname{append}(\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3)$.

- 3 SCCs: $\{$ applast $/ 3\}$, \{append/3\} and $\{1$ last/2\}
- no clause violates the strongly regular condition
- 2 SCCs: $\{f l i p f l i p / 2\}$ and $\{f l i p / 2\}$
- the second clause of $f l i p / 2$ violates the strongly regular condition

Example (strongly regular)

```
applast(L, X, Last) : -append(L, [X], LX), last(Last, LX).
```

last(X, [X]).
last(X, $[\mathrm{H} \mid \mathrm{T}])$: $-\operatorname{last}(\mathrm{X}, \mathrm{T})$.
append([], L, L).
append([H|L1], L2, [H|L3]) : -append(L1, L2, L3).

- 3 SCCs: $\{$ applast $/ 3\},\{$ append $/ 3\}$ and $\{$ last $/ 2\}$
- no clause violates the strongly regular condition

Example (not strongly regular)

```
flipflip(XT, YT) : -flip(XT, TT), flip(TT, YT).
flip(leaf(X), leaf(X)).
flip(tree(L, I, R), tree(FR, I, FL)) : -flip(L, FL), flip(R, FR).
```

- 2 SCCs: $\{f l i p f l i p / 2\}$ and $\{f l i p / 2\}$
- the second clause of flip/ 2 violates the strongly regular condition

Lightweight CPD

(1) Pre-processing

- call and success pattern analysis
- left-termination analysis
- identification of non-regular predicates
(2) Partial evaluation
- non-leftmost unfolding statically determined
- only a limited form of splitting (statically determined)
- no generalization (but might give up)
(3) Post-processing
- initially one-step renamed resultants
- post-unfolding transition compression to avoid intermediate calls

Lightweight CPD

(1) Pre-processing

- call and success pattern analysis
- left-termination analysis
- identification of non-regular predicates
(2) Partial evaluation
- non-leftmost unfolding statically determined
- only a limited form of splitting (statically determined)
- no generalization (but might give up)
(3) Post-processing
- initially one-step renamed resultants
- post-unfolding transition compression to avoid intermediate calls

Partial evaluation: global level

Global state:

$$
\left\langle\left\langle\left\{q s_{1}, \ldots, q s_{n}\right\}, g s\right\rangle\right\rangle
$$

where

- $\left\{q_{1}, \ldots, q s_{n}\right\}$ is a set of queries (with call patterns)
- gs is the set of already partially evaluated queries

Initial global state: $\langle\langle\{q s\}, \emptyset\rangle\rangle$

Transition system

(restart)

(stop)

Partial evaluation: global level

Global state:

$$
\left\langle\left\langle\left\{q s_{1}, \ldots, q s_{n}\right\}, g s\right\rangle\right\rangle
$$

where

- $\left\{q s_{1}, \ldots, q s_{n}\right\}$ is a set of queries (with call patterns)
- gs is the set of already partially evaluated queries

Initial global state: $\langle\langle\{q s\}, \emptyset\rangle\rangle$
Transition system
(restart)

(stop)

Partial evaluation: global level

Global state:

$$
\left\langle\left\langle\left\{q s_{1}, \ldots, q s_{n}\right\}, g s\right\rangle\right\rangle
$$

where

- $\left\{q s_{1}, \ldots, q s_{n}\right\}$ is a set of queries (with call patterns)
- $g s$ is the set of already partially evaluated queries

Initial global state: $\langle\langle\{q s\}, \emptyset\rangle\rangle$
Transition system

Partial evaluation: global level

Global state:

$$
\left\langle\left\langle\left\{q s_{1}, \ldots, q s_{n}\right\}, g s\right\rangle\right\rangle
$$

where

- $\left\{q s_{1}, \ldots, q s_{n}\right\}$ is a set of queries (with call patterns)
- $g s$ is the set of already partially evaluated queries

Initial global state: $\langle\langle\{q s\}, \emptyset\rangle\rangle$
Transition system
(restart)

Partial evaluation: global level

Global state:

$$
\left\langle\left\langle\left\{q s_{1}, \ldots, q s_{n}\right\}, g s\right\rangle\right\rangle
$$

where

- $\left\{q s_{1}, \ldots, q s_{n}\right\}$ is a set of queries (with call patterns)
- $g s$ is the set of already partially evaluated queries

Initial global state: $\langle\langle\{q s\}, \emptyset\rangle\rangle$

Transition system

$$
\begin{aligned}
\text { (restart) } & \frac{\nexists q s^{\prime} \in g s . q s_{i} \unrhd q s^{\prime}, i \in\{1, \ldots, n\}}{\left\langle\left\langle\left\{q s_{1}, \ldots, q s_{n}\right\}, g s\right\rangle\right\rangle \rightarrow\left\langle q s_{i},[],\left\{q s_{i}\right\} \cup g s\right\rangle} \\
\text { (stop) } & \frac{\exists q s^{\prime} \in g s . q s_{i} \unrhd q s^{\prime}, i \in\{1, \ldots, n\}}{\left\langle\left\langle\left\{q s_{1}, \ldots, q s_{n}\right\}, g s\right\rangle\right\rangle \rightarrow q s_{i}\langle\langle \rangle\rangle}
\end{aligned}
$$

Partial evaluation: local level

Local states:

$$
\langle q s, \mid s, g s\rangle
$$

where

- as is a query (with call paterns)
- Is is the local stack (queries already processed in the local level)
- gs is the global stack (queries already processed in the global level)

Partial evaluation: local level

Local states:

$$
\langle q s, \mid s, g s\rangle
$$

where

- qs is a query (with call paterns)
- Is is the local stack (queries already processed in the local level)
- gs is the global stack (queries already processed in the global level)

Partial evaluation: local level

Local states:

$$
\langle q s, \mid s, g s\rangle
$$

where

- qs is a query (with call paterns)
- Is is the local stack (queries already processed in the local level)
- gs is the global stack (queries already processed in the global level)

Partial evaluation: local level

Local states:

$$
\langle q s, \mid s, g s\rangle
$$

where

- qs is a query (with call paterns)
- Is is the local stack (queries already processed in the local level)
- gs is the global stack (queries already processed in the global level)

Definition (unfoldable atom)

- it doesn't embed any previous call
- leftmost atom or left-terminating for the associated call pattern (to ensure correctness w.r.t. finite failures, instead of requiring weakly fair SLD trees [De Schreye et al, JLP 99])

For instance, given the query $\mathrm{p}(\mathrm{a}), \mathrm{q}(\mathrm{X})$ and the program

the derivation $p(a), q(X) \leadsto p(a), q(X)$ is not weakly fair (thus $\mathrm{pq}(\mathrm{X})$: $-\mathrm{pq}(\mathrm{X})$. is not a legal resultant)

In our context, $\mathrm{q}(\mathrm{X})$ is not unfoldable (not left-terminating)

Definition (unfoldable atom)

- it doesn't embed any previous call
- leftmost atom or left-terminating for the associated call pattern (to ensure correctness w.r.t. finite failures, instead of requiring weakly fair SLD trees [De Schreye et al, JLP 99])

For instance, given the query $\mathrm{p}(\mathrm{a}), \mathrm{q}(\mathrm{X})$ and the program

$$
\begin{aligned}
& \mathrm{p}(\mathrm{~b}) . \\
& \mathrm{q}(\mathrm{X}):-\mathrm{q}(\mathrm{X}) .
\end{aligned}
$$

the derivation $p(a), q(X) \leadsto p(a), q(X)$ is not weakly fair (thus $\mathrm{pq}(\mathrm{X})$: $-\mathrm{pq}(\mathrm{X})$. is not a legal resultant)

In our context, $\mathrm{q}(\mathrm{X})$ is not unfoldable (not left-terminating)

Definition (unfoldable atom)

- it doesn't embed any previous call
- leftmost atom or left-terminating for the associated call pattern (to ensure correctness w.r.t. finite failures, instead of requiring weakly fair SLD trees [De Schreye et al, JLP 99])

For instance, given the query $\mathrm{p}(\mathrm{a}), \mathrm{q}(\mathrm{X})$ and the program

$$
\begin{aligned}
& \mathrm{p}(\mathrm{~b}) . \\
& \mathrm{q}(\mathrm{X}):-\mathrm{q}(\mathrm{X}) .
\end{aligned}
$$

the derivation $p(a), q(X) \leadsto p(a), q(X)$ is not weakly fair (thus $\mathrm{pq}(\mathrm{X})$: $-\mathrm{pq}(\mathrm{X})$. is not a legal resultant)

In our context, $\mathrm{q}(\mathrm{X})$ is not unfoldable (not left-terminating)

Splitting

Definition (independent splitting)

Given a query $q s$, we have that $q s_{1}, q s_{2}, q s_{3}$ is an independent splitting if

- $q s=q s_{1}, q s_{2}, q s_{3}$
- $q s_{1}$ and $q s_{2}$ do not share variables (according to call patterns)

For instance, given the query
$q s=\operatorname{append}\left(\mathrm{X}, \mathrm{Y}, \mathrm{L}_{1}\right), \operatorname{append}\left(\mathrm{X}, \mathrm{Z}, \mathrm{L}_{2}\right), \operatorname{append}\left(\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{R}\right)$
the independent splitting of qs returns

Splitting

Definition (independent splitting)

Given a query $q s$, we have that $q s_{1}, q s_{2}, q s_{3}$ is an independent splitting if

- $q s=q s_{1}, q s_{2}, q s_{3}$
- $q s_{1}$ and $q s_{2}$ do not share variables (according to call patterns)

For instance, given the query

$$
q s=\operatorname{append}\left(\mathrm{X}, \mathrm{Y}, \mathrm{~L}_{1}\right), \operatorname{append}\left(\mathrm{X}, \mathrm{Z}, \mathrm{~L}_{2}\right), \operatorname{append}\left(\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{R}\right)
$$

the independent splitting of $q s$ returns

$$
\begin{aligned}
q s_{1} & =\operatorname{append}\left(\mathrm{X}, \mathrm{Y}, \mathrm{~L}_{1}\right) \\
q s_{2} & =\operatorname{append}\left(\mathrm{X}, \mathrm{Z}, \mathrm{~L}_{2}\right) \\
q s_{3} & =\operatorname{append}\left(\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{R}\right)
\end{aligned}
$$

Definition (regular splitting)

Given a query $q s$, we have that $q s_{1}, \ldots, q s_{n}$ is a regular splitting if

- $q s=q s_{1}, \ldots, q s_{n}$
- every $q s_{i}$ contains at most one non-regular predicate
\square

$$
\text { flip(L, FL) }, f 1 \mathrm{ip}(\mathrm{R}, \mathrm{FR})
$$

since flip/2 is non-regular

Definition (regular splitting)

Given a query $q s$, we have that $q s_{1}, \ldots, q s_{n}$ is a regular splitting if

- $q s=q s_{1}, \ldots, q s_{n}$
- every $q s_{i}$ contains at most one non-regular predicate

For instance, the regular splitting of
flip(L, FL), flip(R,FR)
is

$$
\begin{aligned}
q s_{1} & =f \operatorname{lip}(L, F L) \\
q s_{2} & =f \operatorname{lip}(\mathrm{R}, \mathrm{FR})
\end{aligned}
$$

since flip/2 is non-regular

Partial evaluation: local level

$$
\left(\text { variant) } \frac{\exists q s^{\prime} \in I s . q s \approx q s^{\prime}}{\langle q s, \mid s, g s\rangle \stackrel{\rightharpoonup}{\Rightarrow}\langle\diamond, \mid s, g s\rangle}\right.
$$

(independent splitting)

(unfold)

(regular splitting)

Partial evaluation: local level

$$
\text { (variant) } \frac{\exists q s^{\prime} \in I s . q s \approx q s^{\prime}}{\langle q s, \mid s, g s\rangle \stackrel{v}{\Rightarrow}\langle\diamond, \mid s, g s\rangle}
$$

(independent splitting) $\frac{\text { i-split }(q s)=\left\langle q s_{1}, q s_{2}, q s_{3}\right\rangle}{\langle q s, \mid s, g s\rangle \stackrel{i}{\Rightarrow}\left\langle\left\langle\left\{q s_{1}, q s_{2}, q s_{3}\right\}, g s\right\rangle\right\rangle}$

Partial evaluation: local level

$$
\text { (variant) } \frac{\exists q s^{\prime} \in I s . q s \approx q s^{\prime}}{\langle q s, \mid s, g s\rangle \stackrel{v}{\Rightarrow}\langle\diamond, \mid s, g s\rangle}
$$

(independent splitting) $\frac{\mathrm{i} \text {-split }(q s)=\left\langle q s_{1}, q s_{2}, q s_{3}\right\rangle}{\langle q s, \mid s, g s\rangle \stackrel{i}{\Rightarrow}\left\langle\left\langle\left\{q s_{1}, q s_{2}, q s_{3}\right\}, g s\right\rangle\right\rangle}$

$$
\text { (unfold) } \frac{\text { unfold }(q s)=q s^{\prime}}{\langle q s, \mid s, g s\rangle \stackrel{u}{\Rightarrow}{ }_{\sigma}\left\langle q s^{\prime},\{q s\} \cup I s, g s\right\rangle}
$$

Partial evaluation: local level

$$
\text { (variant) } \frac{\exists q s^{\prime} \in I s . q s \approx q s^{\prime}}{\langle q s, \mid s, g s\rangle \stackrel{v}{\Rightarrow}\langle\diamond, \mid s, g s\rangle}
$$

(independent splitting) $\frac{\text { i-split }(q s)=\left\langle q s_{1}, q s_{2}, q s_{3}\right\rangle}{\langle q s, \mid s, g s\rangle \stackrel{i}{\Rightarrow}\left\langle\left\langle\left\{q s_{1}, q s_{2}, q s_{3}\right\}, g s\right\rangle\right\rangle}$

$$
\text { (unfold) } \frac{\text { unfold }(q s)=q s^{\prime}}{\langle q s, \mid s, g s\rangle \stackrel{u}{\Rightarrow_{\sigma}}\left\langle q s^{\prime},\{q s\} \cup I s, g s\right\rangle}
$$

$$
\text { (regular splitting) } \frac{r-s p l i t(q s)=\left\langle q s_{1}, \ldots, q s_{n}\right\rangle}{\langle q s, \mid s, g s\rangle \stackrel{r}{\Rightarrow}\left\langle\left\langle\left\{q s_{1}, \ldots, q s_{n}\right\}, g s\right\rangle\right\rangle}
$$

Lightweight CPD

(1) Pre-processing

- call and success pattern analysis
- left-termination analysis
- identification of non-regular predicates
(2) Partial evaluation
- non-leftmost unfolding statically determined
- only a limited form of splitting (statically determined)
- no generalization (but might give up)
(3) Post-processing
- initially one-step renamed resultants
- post-unfolding transition compression to avoid intermediate calls

Lightweight CPD

Pre-processing

- call and success pattern analysis
- left-termination analysis
- identification of non-regular predicates
© Partial evaluation
- non-leftmost unfolding statically determined
- only a limited form of splitting (statically determined)
- no generalization (but might give up)
(3) Post-processing
- initially one-step renamed resultants
- post-unfolding transition compression to avoid intermediate calls

Post-processing

- For $\langle q s, \mid s, g s\rangle \stackrel{\mu}{\Rightarrow}{ }_{\sigma}\left\langle q s^{\prime}, \mid s^{\prime}, g s^{\prime}\right\rangle$
we produce $\operatorname{ren}(q s) \sigma \leftarrow r e n\left(q s^{\prime}\right)$
- For $\langle q s, \mid s, g s\rangle \stackrel{s}{\Rightarrow}\left\langle\left\langle\left\{q s_{1}, \ldots, q s_{n}\right\},-\right\rangle\right\rangle$, with $s \in\{i, r\}$ we produce $\operatorname{ren}(a s) \leftarrow \operatorname{ren}\left(a s_{1}\right) \ldots . \operatorname{ren}\left(a s_{n}\right)$
- For every global transition $\left\langle\left\langle\left\{q s_{1}\right.\right.\right.$, we produce a residual clause of the form ren $\left(q s_{i}\right) \leftarrow q s_{i}$

Post-processing

- For $\langle q s, \mid s, g s\rangle \stackrel{\mu}{\Rightarrow}{ }_{\sigma}\left\langle q s^{\prime}, \mid s^{\prime}, g s^{\prime}\right\rangle$
we produce $r e n(q s) \sigma \leftarrow r e n\left(q s^{\prime}\right)$
- For $\langle q s, \mid s, g s\rangle \stackrel{s}{\Rightarrow}\left\langle\left\langle\left\{q s_{1}, \ldots, q s_{n}\right\},-\right\rangle\right\rangle$, with $s \in\{i, r\}$ we produce $\operatorname{ren}(q s) \leftarrow \operatorname{ren}\left(q s_{1}\right), \ldots, \operatorname{ren}\left(q s_{n}\right)$
- For every global transition $\left\langle\left\langle\left\{q s_{1}\right.\right.\right.$, we produce a residual clause of the form $\operatorname{ren}\left(q s_{i}\right) \longleftarrow q s_{i}$

Post-processing

- For $\langle q s, \mid s, g s\rangle \stackrel{\mu}{\Rightarrow}{ }_{\sigma}\left\langle q s^{\prime}, \mid s^{\prime}, g s^{\prime}\right\rangle$
we produce $\operatorname{ren}(q s) \sigma \leftarrow \operatorname{ren}\left(q s^{\prime}\right)$
- For $\langle q s, \mid s, g s\rangle \stackrel{s}{\Rightarrow}\left\langle\left\langle\left\{q s_{1}, \ldots, q s_{n}\right\},-\right\rangle\right\rangle$, with $s \in\{i, r\}$ we produce $\operatorname{ren}(q s) \leftarrow \operatorname{ren}\left(q s_{1}\right), \ldots, \operatorname{ren}\left(q s_{n}\right)$
- For every global transition $\left\langle\left\langle\left\{q s_{1}, \ldots, q s_{n}\right\},-\right\rangle\right\rangle \rightarrow q s_{i}\langle\langle \rangle\rangle$ we produce a residual clause of the form $\operatorname{ren}\left(q s_{i}\right) \leftarrow q s_{i}$

Experimental results

A prototype has been implemented (≈ 1000 lines, SWI Prolog) (left-termination and SRP analysis still missing)
http ://kaz.dsic.upv.es/lite.html

benchmark	regexp.r2	regexp.r3	relative	rev_acc_type	rotateprune	transpose
original	28	41	9	35	32	58
residual	8	12	3	34	45	0

Experimental results

A prototype has been implemented (≈ 1000 lines, SWI Prolog) (left-termination and SRP analysis still missing)
http ://kaz.dsic.upv.es/lite.html

benchmark	advisor	applast	depth	doubleapp	ex_depth	flip	matchapp	regexp.r1
original	4	58	24	50	24	34	374	73
residual	0	29	1	34	15	47	23	10

benchmark	regexp.r2	regexp.r3	relative	rev_acc_type	rotateprune	transpose
original	28	41	96	35	32	58
residual	8	12	3	34	45	0

Summary and future work

New hybrid framework for CPD (correctness not difficult)
Well suited to preserve run time information (groundness and sharing)
Good candidate to develop a paralelizing partial evaluator

Summary and future work

New hybrid framework for CPD (correctness not difficult)
Well suited to preserve run time information (groundness and sharing)
Good candidate to develop a paralelizing partial evaluator

Future work

- deal with built-in's and negation
- add (run time) variable sharing information
- produce paralel conjunctions in residual programs
(preliminary experiments with concurrent/3 are promising)

Summary and future work

New hybrid framework for CPD (correctness not difficult)
Well suited to preserve run time information (groundness and sharing)
Good candidate to develop a paralelizing partial evaluator

Future work

- deal with built-in's and negation
- add (run time) variable sharing information
- produce paralel conjunctions in residual programs
(preliminary experiments with concurrent/3 are promising)

Summary and future work

New hybrid framework for CPD (correctness not difficult)
Well suited to preserve run time information (groundness and sharing)
Good candidate to develop a paralelizing partial evaluator

Future work

- deal with built-in's and negation
- add (run time) variable sharing information
- produce paralel conjunctions in residual programs (preliminary experiments with concurrent/3 are promising)

