
A Hybrid Approach to Conjunctive Partial Deduction

Germán Vidal

Technical University of Valencia

Int’l Symp. on Logic-Based Program Synthesis and Transformation
LOPSTR 2010

July 23-25, 2010
Castle of Hagenberg, Austria

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 1 / 19

introduction partial evaluation

Introduction

Partial evaluation�� ��input program and part of input data (static data)�� ��output specialized (residual) program

Partial evaluator

constructs a finite representation of all possible computations

extracts resultants from transitions

Optimization comes from

compressing paths in the graph (linear speedups for loops)

renaming of expressions (removes unnecessary symbols)

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 2 / 19

introduction partial evaluation

Introduction

Partial evaluation�� ��input program and part of input data (static data)�� ��output specialized (residual) program

Partial evaluator

constructs a finite representation of all possible computations

extracts resultants from transitions

Optimization comes from

compressing paths in the graph (linear speedups for loops)

renaming of expressions (removes unnecessary symbols)

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 2 / 19

introduction partial evaluation

Introduction

Partial evaluation�� ��input program and part of input data (static data)�� ��output specialized (residual) program

Partial evaluator

constructs a finite representation of all possible computations

extracts resultants from transitions

Optimization comes from

compressing paths in the graph (linear speedups for loops)

renaming of expressions (removes unnecessary symbols)

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 2 / 19

introduction conjunctive partial deduction

Conjunctive partial deduction�� ��Input logic program P and a query Q0�� ��Initialization S = {Q0} S = {Q0,Q3,Q4,Q5} S = {Q0,Q3,Q4,Q5,Q6}

Q0

~~}}
}}

}}
}}

 A
AA

AA
AA

A

Q1

��

Q2

~~}}
}}

}}
}}

��
Q3 Q4 Q5

Q3

~~}}
}}

}}
}}

 A
AA

AA
AA

A

Q6 Q7

��
Q8 (instance of Q0)

The set is kept finite using

generalization

splitting

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 3 / 19

introduction conjunctive partial deduction

Conjunctive partial deduction�� ��Input logic program P and a query Q0�� ��Initialization S = {Q0} S = {Q0,Q3,Q4,Q5} S = {Q0,Q3,Q4,Q5,Q6}

Q0

~~}}
}}

}}
}}

 A
AA

AA
AA

A

Q1

��

Q2

~~}}
}}

}}
}}

��
Q3 Q4 Q5

Q3

~~}}
}}

}}
}}

 A
AA

AA
AA

A

Q6 Q7

��
Q8 (instance of Q0)

The set is kept finite using

generalization

splitting

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 3 / 19

introduction conjunctive partial deduction

Conjunctive partial deduction�� ��Input logic program P and a query Q0�� ��Initialization S = {Q0} S = {Q0,Q3,Q4,Q5} S = {Q0,Q3,Q4,Q5,Q6}

Q0

~~}}
}}

}}
}}

 A
AA

AA
AA

A

Q1

��

Q2

~~}}
}}

}}
}}

��
Q3 Q4 Q5

Q3

~~}}
}}

}}
}}

 A
AA

AA
AA

A

Q6 Q7

��
Q8 (instance of Q0)

The set is kept finite using

generalization

splitting

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 3 / 19

introduction conjunctive partial deduction

Conjunctive partial deduction�� ��Input logic program P and a query Q0�� ��Initialization S = {Q0} S = {Q0,Q3,Q4,Q5} S = {Q0,Q3,Q4,Q5,Q6}

Q0

~~}}
}}

}}
}}

 A
AA

AA
AA

A

Q1

��

Q2

~~}}
}}

}}
}}

��
Q3 Q4 Q5

Q3

~~}}
}}

}}
}}

 A
AA

AA
AA

A

Q6 Q7

��
Q8 (instance of Q0)

The set is kept finite using

generalization

splitting

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 3 / 19

introduction conjunctive partial deduction

Conjunctive partial deduction�� ��Input logic program P and a query Q0�� ��Initialization S = {Q0} S = {Q0,Q3,Q4,Q5} S = {Q0,Q3,Q4,Q5,Q6}

Q0

~~}}
}}

}}
}}

 A
AA

AA
AA

A

Q1

��

Q2

~~}}
}}

}}
}}

��
Q3 Q4 Q5

Q3

~~}}
}}

}}
}}

 A
AA

AA
AA

A

Q6 Q7

��
Q8 (instance of Q0)

The set is kept finite using

generalization

splitting

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 3 / 19

introduction conjunctive partial deduction

Conjunctive partial deduction�� ��Input logic program P and a query Q0�� ��Initialization S = {Q0} S = {Q0,Q3,Q4,Q5} S = {Q0,Q3,Q4,Q5,Q6}

Q0

~~}}
}}

}}
}}

 A
AA

AA
AA

A

Q1

��

Q2

~~}}
}}

}}
}}

��
Q3 Q4 Q5

Q3

~~}}
}}

}}
}}

 A
AA

AA
AA

A

Q6 Q7

��
Q8 (instance of Q0)

The set is kept finite using

generalization

splitting

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 3 / 19

introduction conjunctive partial deduction

Conjunctive partial deduction�� ��Input logic program P and a query Q0�� ��Initialization S = {Q0} S = {Q0,Q3,Q4,Q5} S = {Q0,Q3,Q4,Q5,Q6}

Q0

~~}}
}}

}}
}}

 A
AA

AA
AA

A

Q1

��

Q2

~~}}
}}

}}
}}

��
Q3 Q4 Q5

Q3

~~}}
}}

}}
}}

 A
AA

AA
AA

A

Q6 Q7

��
Q8 (instance of Q0)

The set is kept finite using

generalization

splitting

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 3 / 19

introduction motivation

This work

Original motivation:

paralelizing partial evaluation?

run time groundness and sharing information is essential

Current approaches not useful because

run time information is not available (only PE time info)

usual operations (instance and splitting) do not preserve groundness
and sharing�

�

�

�

Our approach:

hybrid control issues (combines static analysis and online tests)

run time groundness information available

good starting point for paralelizing partial evaluation

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 4 / 19

introduction motivation

This work

Original motivation:

paralelizing partial evaluation?

run time groundness and sharing information is essential

Current approaches not useful because

run time information is not available (only PE time info)

usual operations (instance and splitting) do not preserve groundness
and sharing�

�

�

�

Our approach:

hybrid control issues (combines static analysis and online tests)

run time groundness information available

good starting point for paralelizing partial evaluation

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 4 / 19

introduction motivation

This work

Original motivation:

paralelizing partial evaluation?

run time groundness and sharing information is essential

Current approaches not useful because

run time information is not available (only PE time info)

usual operations (instance and splitting) do not preserve groundness
and sharing�

�

�

�

Our approach:

hybrid control issues (combines static analysis and online tests)

run time groundness information available

good starting point for paralelizing partial evaluation

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 4 / 19

introduction motivation

This work

Original motivation:

paralelizing partial evaluation?

run time groundness and sharing information is essential

Current approaches not useful because

run time information is not available (only PE time info)

usual operations (instance and splitting) do not preserve groundness
and sharing�

�

�

�

Our approach:

hybrid control issues (combines static analysis and online tests)

run time groundness information available

good starting point for paralelizing partial evaluation

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 4 / 19

lightweight CPD basic scheme

Lightweight CPD

1 Pre-processing

call and success pattern analysis
left-termination analysis
identification of non-regular predicates

2 Partial evaluation

non-leftmost unfolding statically determined
only a limited form of splitting (statically determined)
no generalization (but might give up)

3 Post-processing

initially one-step renamed resultants
post-unfolding transition compression to avoid intermediate calls

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 5 / 19

lightweight CPD basic scheme

Lightweight CPD

1 Pre-processing

call and success pattern analysis
left-termination analysis
identification of non-regular predicates

2 Partial evaluation

non-leftmost unfolding statically determined
only a limited form of splitting (statically determined)
no generalization (but might give up)

3 Post-processing

initially one-step renamed resultants
post-unfolding transition compression to avoid intermediate calls

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 5 / 19

lightweight CPD pre-processing

Static analyses

Call and success pattern analysis (e.g., [Leuschel and Vidal, LOPSTR’08])

for each predicate p/n, we get a set of patterns p/n : in 7→ out

e.g., append/3 : {1, 2} 7→ {1, 2, 3}�
�

�
append([], Y, Y).

append([X|R], Y, [X|S]) : −append(R, Y, S).

Left-termination analysis

determines if p/n terminates for call pattern in with Prolog’s leftmost
selection strategy

e.g., append/3 left-terminates for call pattern {1}
e.g., append/3 doesn’t left-terminate for call pattern {2}

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 6 / 19

lightweight CPD pre-processing

Static analyses

Call and success pattern analysis (e.g., [Leuschel and Vidal, LOPSTR’08])

for each predicate p/n, we get a set of patterns p/n : in 7→ out

e.g., append/3 : {1, 2} 7→ {1, 2, 3}�
�

�
append([], Y, Y).

append([X|R], Y, [X|S]) : −append(R, Y, S).

Left-termination analysis

determines if p/n terminates for call pattern in with Prolog’s leftmost
selection strategy

e.g., append/3 left-terminates for call pattern {1}
e.g., append/3 doesn’t left-terminate for call pattern {2}

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 6 / 19

lightweight CPD pre-processing

Strongly regular programs

Extends B-stratifiable programs [Hruza and Stepánek, TPLP 2004]:

first, the call graph of the program is built

predicate p/n is strongly regular if there is no

p(t1, . . . , tn)← body

such that body contains two atoms in the same SCC as p/n

a logic program is strongly regular if all predicates are

Property: SRP cannot produce infinitely growing conjunctions at PE time

�

�
	Identifying non-regular predicates will become useful to decide how

to split queries at partial evaluation time

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 7 / 19

lightweight CPD pre-processing

Strongly regular programs

Extends B-stratifiable programs [Hruza and Stepánek, TPLP 2004]:

first, the call graph of the program is built

predicate p/n is strongly regular if there is no

p(t1, . . . , tn)← body

such that body contains two atoms in the same SCC as p/n

a logic program is strongly regular if all predicates are

Property: SRP cannot produce infinitely growing conjunctions at PE time

�

�
	Identifying non-regular predicates will become useful to decide how

to split queries at partial evaluation time

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 7 / 19

lightweight CPD pre-processing

Strongly regular programs

Extends B-stratifiable programs [Hruza and Stepánek, TPLP 2004]:

first, the call graph of the program is built

predicate p/n is strongly regular if there is no

p(t1, . . . , tn)← body

such that body contains two atoms in the same SCC as p/n

a logic program is strongly regular if all predicates are

Property: SRP cannot produce infinitely growing conjunctions at PE time

�

�
	Identifying non-regular predicates will become useful to decide how

to split queries at partial evaluation time

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 7 / 19

lightweight CPD pre-processing

Strongly regular programs

Extends B-stratifiable programs [Hruza and Stepánek, TPLP 2004]:

first, the call graph of the program is built

predicate p/n is strongly regular if there is no

p(t1, . . . , tn)← body

such that body contains two atoms in the same SCC as p/n

a logic program is strongly regular if all predicates are

Property: SRP cannot produce infinitely growing conjunctions at PE time

�

�
	Identifying non-regular predicates will become useful to decide how

to split queries at partial evaluation time

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 7 / 19

lightweight CPD pre-processing

Strongly regular programs

Extends B-stratifiable programs [Hruza and Stepánek, TPLP 2004]:

first, the call graph of the program is built

predicate p/n is strongly regular if there is no

p(t1, . . . , tn)← body

such that body contains two atoms in the same SCC as p/n

a logic program is strongly regular if all predicates are

Property: SRP cannot produce infinitely growing conjunctions at PE time

�

�
	Identifying non-regular predicates will become useful to decide how

to split queries at partial evaluation time

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 7 / 19

lightweight CPD pre-processing

Strongly regular programs

Extends B-stratifiable programs [Hruza and Stepánek, TPLP 2004]:

first, the call graph of the program is built

predicate p/n is strongly regular if there is no

p(t1, . . . , tn)← body

such that body contains two atoms in the same SCC as p/n

a logic program is strongly regular if all predicates are

Property: SRP cannot produce infinitely growing conjunctions at PE time

�

�
	Identifying non-regular predicates will become useful to decide how

to split queries at partial evaluation time

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 7 / 19

lightweight CPD pre-processing

Example (strongly regular)

applast(L, X, Last) : −append(L, [X], LX), last(Last, LX).
last(X, [X]).
last(X, [H|T]) : −last(X, T).
append([], L, L).
append([H|L1], L2, [H|L3]) : −append(L1, L2, L3).

3 SCCs: {applast/3}, {append/3} and {last/2}
no clause violates the strongly regular condition

Example (not strongly regular)

flipflip(XT, YT) : −flip(XT, TT), flip(TT, YT).
flip(leaf(X), leaf(X)).
flip(tree(L, I, R), tree(FR, I, FL)) : −flip(L, FL), flip(R, FR).

2 SCCs: {flipflip/2} and {flip/2}
the second clause of flip/2 violates the strongly regular condition

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 8 / 19

lightweight CPD pre-processing

Example (strongly regular)

applast(L, X, Last) : −append(L, [X], LX), last(Last, LX).
last(X, [X]).
last(X, [H|T]) : −last(X, T).
append([], L, L).
append([H|L1], L2, [H|L3]) : −append(L1, L2, L3).

3 SCCs: {applast/3}, {append/3} and {last/2}
no clause violates the strongly regular condition

Example (not strongly regular)

flipflip(XT, YT) : −flip(XT, TT), flip(TT, YT).
flip(leaf(X), leaf(X)).
flip(tree(L, I, R), tree(FR, I, FL)) : −flip(L, FL), flip(R, FR).

2 SCCs: {flipflip/2} and {flip/2}
the second clause of flip/2 violates the strongly regular condition

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 8 / 19

partial evaluation CPD

Lightweight CPD

1 Pre-processing

call and success pattern analysis
left-termination analysis
identification of non-regular predicates

2 Partial evaluation

non-leftmost unfolding statically determined
only a limited form of splitting (statically determined)
no generalization (but might give up)

3 Post-processing

initially one-step renamed resultants
post-unfolding transition compression to avoid intermediate calls

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 9 / 19

partial evaluation CPD

Lightweight CPD

1 Pre-processing

call and success pattern analysis
left-termination analysis
identification of non-regular predicates

2 Partial evaluation

non-leftmost unfolding statically determined
only a limited form of splitting (statically determined)
no generalization (but might give up)

3 Post-processing

initially one-step renamed resultants
post-unfolding transition compression to avoid intermediate calls

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 9 / 19

partial evaluation global level

Partial evaluation: global level

Global state:
〈〈{qs1, . . . , qsn}, gs〉〉

where

{qs1, . . . , qsn} is a set of queries (with call patterns)

gs is the set of already partially evaluated queries

Initial global state: 〈〈{qs}, ∅〉〉

Transition system�

�

�

�
(restart)

6 ∃qs ′ ∈ gs. qsi � qs ′, i ∈ {1, . . . , n}
〈〈{qs1, . . . , qsn}, gs〉〉 → 〈qsi , [], {qsi} ∪ gs〉

(stop)
∃qs ′ ∈ gs. qsi � qs ′, i ∈ {1, . . . , n}
〈〈{qs1, . . . , qsn}, gs〉〉 →qsi 〈〈 〉〉

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 10 / 19

partial evaluation global level

Partial evaluation: global level

Global state:
〈〈{qs1, . . . , qsn}, gs〉〉

where

{qs1, . . . , qsn} is a set of queries (with call patterns)

gs is the set of already partially evaluated queries

Initial global state: 〈〈{qs}, ∅〉〉

Transition system�

�

�

�
(restart)

6 ∃qs ′ ∈ gs. qsi � qs ′, i ∈ {1, . . . , n}
〈〈{qs1, . . . , qsn}, gs〉〉 → 〈qsi , [], {qsi} ∪ gs〉

(stop)
∃qs ′ ∈ gs. qsi � qs ′, i ∈ {1, . . . , n}
〈〈{qs1, . . . , qsn}, gs〉〉 →qsi 〈〈 〉〉

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 10 / 19

partial evaluation global level

Partial evaluation: global level

Global state:
〈〈{qs1, . . . , qsn}, gs〉〉

where

{qs1, . . . , qsn} is a set of queries (with call patterns)

gs is the set of already partially evaluated queries

Initial global state: 〈〈{qs}, ∅〉〉

Transition system�

�

�

�
(restart)

6 ∃qs ′ ∈ gs. qsi � qs ′, i ∈ {1, . . . , n}
〈〈{qs1, . . . , qsn}, gs〉〉 → 〈qsi , [], {qsi} ∪ gs〉

(stop)
∃qs ′ ∈ gs. qsi � qs ′, i ∈ {1, . . . , n}
〈〈{qs1, . . . , qsn}, gs〉〉 →qsi 〈〈 〉〉

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 10 / 19

partial evaluation global level

Partial evaluation: global level

Global state:
〈〈{qs1, . . . , qsn}, gs〉〉

where

{qs1, . . . , qsn} is a set of queries (with call patterns)

gs is the set of already partially evaluated queries

Initial global state: 〈〈{qs}, ∅〉〉

Transition system�

�

�

�
(restart)

6 ∃qs ′ ∈ gs. qsi � qs ′, i ∈ {1, . . . , n}
〈〈{qs1, . . . , qsn}, gs〉〉 → 〈qsi , [], {qsi} ∪ gs〉

(stop)
∃qs ′ ∈ gs. qsi � qs ′, i ∈ {1, . . . , n}
〈〈{qs1, . . . , qsn}, gs〉〉 →qsi 〈〈 〉〉

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 10 / 19

partial evaluation global level

Partial evaluation: global level

Global state:
〈〈{qs1, . . . , qsn}, gs〉〉

where

{qs1, . . . , qsn} is a set of queries (with call patterns)

gs is the set of already partially evaluated queries

Initial global state: 〈〈{qs}, ∅〉〉

Transition system�

�

�

�
(restart)

6 ∃qs ′ ∈ gs. qsi � qs ′, i ∈ {1, . . . , n}
〈〈{qs1, . . . , qsn}, gs〉〉 → 〈qsi , [], {qsi} ∪ gs〉

(stop)
∃qs ′ ∈ gs. qsi � qs ′, i ∈ {1, . . . , n}
〈〈{qs1, . . . , qsn}, gs〉〉 →qsi 〈〈 〉〉

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 10 / 19

partial evaluation local level

Partial evaluation: local level

Local states:
〈qs, ls, gs〉

where

qs is a query (with call paterns)

ls is the local stack (queries already processed in the local level)

gs is the global stack (queries already processed in the global level)

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 11 / 19

partial evaluation local level

Partial evaluation: local level

Local states:
〈qs, ls, gs〉

where

qs is a query (with call paterns)

ls is the local stack (queries already processed in the local level)

gs is the global stack (queries already processed in the global level)

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 11 / 19

partial evaluation local level

Partial evaluation: local level

Local states:
〈qs, ls, gs〉

where

qs is a query (with call paterns)

ls is the local stack (queries already processed in the local level)

gs is the global stack (queries already processed in the global level)

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 11 / 19

partial evaluation local level

Partial evaluation: local level

Local states:
〈qs, ls, gs〉

where

qs is a query (with call paterns)

ls is the local stack (queries already processed in the local level)

gs is the global stack (queries already processed in the global level)

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 11 / 19

partial evaluation local level

Definition (unfoldable atom)

it doesn’t embed any previous call

leftmost atom or left-terminating for the associated call pattern

(to ensure correctness w.r.t. finite failures, instead of requiring weakly
fair SLD trees [De Schreye et al, JLP 99])

For instance, given the query p(a), q(X) and the program

p(b).
q(X) : −q(X).

the derivation p(a), q(X) ; p(a), q(X) is not weakly fair
(thus pq(X) : −pq(X). is not a legal resultant)

In our context, q(X) is not unfoldable (not left-terminating)

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 12 / 19

partial evaluation local level

Definition (unfoldable atom)

it doesn’t embed any previous call

leftmost atom or left-terminating for the associated call pattern

(to ensure correctness w.r.t. finite failures, instead of requiring weakly
fair SLD trees [De Schreye et al, JLP 99])

For instance, given the query p(a), q(X) and the program

p(b).
q(X) : −q(X).

the derivation p(a), q(X) ; p(a), q(X) is not weakly fair
(thus pq(X) : −pq(X). is not a legal resultant)

In our context, q(X) is not unfoldable (not left-terminating)

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 12 / 19

partial evaluation local level

Definition (unfoldable atom)

it doesn’t embed any previous call

leftmost atom or left-terminating for the associated call pattern

(to ensure correctness w.r.t. finite failures, instead of requiring weakly
fair SLD trees [De Schreye et al, JLP 99])

For instance, given the query p(a), q(X) and the program

p(b).
q(X) : −q(X).

the derivation p(a), q(X) ; p(a), q(X) is not weakly fair
(thus pq(X) : −pq(X). is not a legal resultant)

In our context, q(X) is not unfoldable (not left-terminating)

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 12 / 19

partial evaluation local level

Splitting

Definition (independent splitting)

Given a query qs, we have that qs1, qs2, qs3 is an independent splitting if

qs = qs1, qs2, qs3

qs1 and qs2 do not share variables (according to call patterns)

For instance, given the query

qs = append(X, Y, L1), append(X, Z, L2), append(L1, L2, R)

the independent splitting of qs returns

qs1 = append(X, Y, L1)
qs2 = append(X, Z, L2)
qs3 = append(L1, L2, R)

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 13 / 19

partial evaluation local level

Splitting

Definition (independent splitting)

Given a query qs, we have that qs1, qs2, qs3 is an independent splitting if

qs = qs1, qs2, qs3

qs1 and qs2 do not share variables (according to call patterns)

For instance, given the query

qs = append(X, Y, L1), append(X, Z, L2), append(L1, L2, R)

the independent splitting of qs returns

qs1 = append(X, Y, L1)
qs2 = append(X, Z, L2)
qs3 = append(L1, L2, R)

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 13 / 19

partial evaluation local level

Definition (regular splitting)

Given a query qs, we have that qs1, . . . , qsn is a regular splitting if

qs = qs1, . . . , qsn

every qsi contains at most one non-regular predicate

For instance, the regular splitting of

flip(L, FL), flip(R, FR)

is

qs1 = flip(L, FL)
qs2 = flip(R, FR)

since flip/2 is non-regular

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 14 / 19

partial evaluation local level

Definition (regular splitting)

Given a query qs, we have that qs1, . . . , qsn is a regular splitting if

qs = qs1, . . . , qsn

every qsi contains at most one non-regular predicate

For instance, the regular splitting of

flip(L, FL), flip(R, FR)

is

qs1 = flip(L, FL)
qs2 = flip(R, FR)

since flip/2 is non-regular

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 14 / 19

partial evaluation local level

Partial evaluation: local level

(variant)
∃qs ′ ∈ ls. qs ≈ qs ′

〈qs, ls, gs〉 v⇒ 〈�, ls, gs〉

(independent splitting)
i-split(qs) = 〈qs1, qs2, qs3〉

〈qs, ls, gs〉 i⇒ 〈〈{qs1, qs2, qs3}, gs〉〉

(unfold)
unfold(qs) = qs ′

〈qs, ls, gs〉 u⇒σ 〈qs ′, {qs} ∪ ls, gs〉

(regular splitting)
r-split(qs) = 〈qs1, . . . , qsn〉

〈qs, ls, gs〉 r⇒ 〈〈{qs1, . . . , qsn}, gs〉〉

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 15 / 19

partial evaluation local level

Partial evaluation: local level

(variant)
∃qs ′ ∈ ls. qs ≈ qs ′

〈qs, ls, gs〉 v⇒ 〈�, ls, gs〉

(independent splitting)
i-split(qs) = 〈qs1, qs2, qs3〉

〈qs, ls, gs〉 i⇒ 〈〈{qs1, qs2, qs3}, gs〉〉

(unfold)
unfold(qs) = qs ′

〈qs, ls, gs〉 u⇒σ 〈qs ′, {qs} ∪ ls, gs〉

(regular splitting)
r-split(qs) = 〈qs1, . . . , qsn〉

〈qs, ls, gs〉 r⇒ 〈〈{qs1, . . . , qsn}, gs〉〉

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 15 / 19

partial evaluation local level

Partial evaluation: local level

(variant)
∃qs ′ ∈ ls. qs ≈ qs ′

〈qs, ls, gs〉 v⇒ 〈�, ls, gs〉

(independent splitting)
i-split(qs) = 〈qs1, qs2, qs3〉

〈qs, ls, gs〉 i⇒ 〈〈{qs1, qs2, qs3}, gs〉〉

(unfold)
unfold(qs) = qs ′

〈qs, ls, gs〉 u⇒σ 〈qs ′, {qs} ∪ ls, gs〉

(regular splitting)
r-split(qs) = 〈qs1, . . . , qsn〉

〈qs, ls, gs〉 r⇒ 〈〈{qs1, . . . , qsn}, gs〉〉

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 15 / 19

partial evaluation local level

Partial evaluation: local level

(variant)
∃qs ′ ∈ ls. qs ≈ qs ′

〈qs, ls, gs〉 v⇒ 〈�, ls, gs〉

(independent splitting)
i-split(qs) = 〈qs1, qs2, qs3〉

〈qs, ls, gs〉 i⇒ 〈〈{qs1, qs2, qs3}, gs〉〉

(unfold)
unfold(qs) = qs ′

〈qs, ls, gs〉 u⇒σ 〈qs ′, {qs} ∪ ls, gs〉

(regular splitting)
r-split(qs) = 〈qs1, . . . , qsn〉

〈qs, ls, gs〉 r⇒ 〈〈{qs1, . . . , qsn}, gs〉〉

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 15 / 19

post-processing

Lightweight CPD

1 Pre-processing

call and success pattern analysis
left-termination analysis
identification of non-regular predicates

2 Partial evaluation

non-leftmost unfolding statically determined
only a limited form of splitting (statically determined)
no generalization (but might give up)

3 Post-processing

initially one-step renamed resultants
post-unfolding transition compression to avoid intermediate calls

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 16 / 19

post-processing

Lightweight CPD

1 Pre-processing

call and success pattern analysis
left-termination analysis
identification of non-regular predicates

2 Partial evaluation

non-leftmost unfolding statically determined
only a limited form of splitting (statically determined)
no generalization (but might give up)

3 Post-processing

initially one-step renamed resultants
post-unfolding transition compression to avoid intermediate calls

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 16 / 19

post-processing

Post-processing

For 〈qs, ls, gs〉 u⇒σ 〈qs ′, ls ′, gs ′〉
we produce ren(qs)σ ← ren(qs ′)

For 〈qs, ls, gs〉 s⇒ 〈〈{qs1, . . . , qsn}, 〉〉, with s ∈ {i , r}
we produce ren(qs)← ren(qs1), . . . , ren(qsn)

For every global transition 〈〈{qs1, . . . , qsn}, 〉〉 →qsi 〈〈 〉〉
we produce a residual clause of the form ren(qsi)← qsi

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 17 / 19

post-processing

Post-processing

For 〈qs, ls, gs〉 u⇒σ 〈qs ′, ls ′, gs ′〉
we produce ren(qs)σ ← ren(qs ′)

For 〈qs, ls, gs〉 s⇒ 〈〈{qs1, . . . , qsn}, 〉〉, with s ∈ {i , r}
we produce ren(qs)← ren(qs1), . . . , ren(qsn)

For every global transition 〈〈{qs1, . . . , qsn}, 〉〉 →qsi 〈〈 〉〉
we produce a residual clause of the form ren(qsi)← qsi

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 17 / 19

post-processing

Post-processing

For 〈qs, ls, gs〉 u⇒σ 〈qs ′, ls ′, gs ′〉
we produce ren(qs)σ ← ren(qs ′)

For 〈qs, ls, gs〉 s⇒ 〈〈{qs1, . . . , qsn}, 〉〉, with s ∈ {i , r}
we produce ren(qs)← ren(qs1), . . . , ren(qsn)

For every global transition 〈〈{qs1, . . . , qsn}, 〉〉 →qsi 〈〈 〉〉
we produce a residual clause of the form ren(qsi)← qsi

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 17 / 19

concluding remarks experimental results

Experimental results

A prototype has been implemented (≈ 1000 lines, SWI Prolog)

(left-termination and SRP analysis still missing)

http : //kaz.dsic.upv.es/lite.html

benchmark advisor applast depth doubleapp ex depth flip matchapp regexp.r1
original 4 58 24 50 24 34 374 73
residual 0 29 1 34 15 47 23 10

benchmark regexp.r2 regexp.r3 relative rev acc type rotateprune transpose
original 28 41 96 35 32 58
residual 8 12 3 34 45 0

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 18 / 19

concluding remarks experimental results

Experimental results

A prototype has been implemented (≈ 1000 lines, SWI Prolog)

(left-termination and SRP analysis still missing)

http : //kaz.dsic.upv.es/lite.html

benchmark advisor applast depth doubleapp ex depth flip matchapp regexp.r1
original 4 58 24 50 24 34 374 73
residual 0 29 1 34 15 47 23 10

benchmark regexp.r2 regexp.r3 relative rev acc type rotateprune transpose
original 28 41 96 35 32 58
residual 8 12 3 34 45 0

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 18 / 19

concluding remarks summary and future work

Summary and future work

New hybrid framework for CPD (correctness not difficult)

Well suited to preserve run time information (groundness and sharing)

Good candidate to develop a paralelizing partial evaluator

Future work

deal with built-in’s and negation

add (run time) variable sharing information

produce paralel conjunctions in residual programs

(preliminary experiments with concurrent/3 are promising)

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 19 / 19

concluding remarks summary and future work

Summary and future work

New hybrid framework for CPD (correctness not difficult)

Well suited to preserve run time information (groundness and sharing)

Good candidate to develop a paralelizing partial evaluator

Future work

deal with built-in’s and negation

add (run time) variable sharing information

produce paralel conjunctions in residual programs

(preliminary experiments with concurrent/3 are promising)

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 19 / 19

concluding remarks summary and future work

Summary and future work

New hybrid framework for CPD (correctness not difficult)

Well suited to preserve run time information (groundness and sharing)

Good candidate to develop a paralelizing partial evaluator

Future work

deal with built-in’s and negation

add (run time) variable sharing information

produce paralel conjunctions in residual programs

(preliminary experiments with concurrent/3 are promising)

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 19 / 19

concluding remarks summary and future work

Summary and future work

New hybrid framework for CPD (correctness not difficult)

Well suited to preserve run time information (groundness and sharing)

Good candidate to develop a paralelizing partial evaluator

Future work

deal with built-in’s and negation

add (run time) variable sharing information

produce paralel conjunctions in residual programs

(preliminary experiments with concurrent/3 are promising)

G Vidal (Valencia, Spain) A Hybrid Approach to CPD LOPSTR 2010 19 / 19

	introduction
	partial evaluation
	conjunctive partial deduction
	motivation

	lightweight CPD
	basic scheme

	lightweight CPD
	pre-processing

	partial evaluation
	CPD
	global level
	local level

	post-processing
	concluding remarks
	experimental results
	summary and future work

