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Abstract. We introduce a transformational approach to improve the
first stage of offline partial evaluation of functional programs, the so
called binding-time analysis (BTA). For this purpose, we first introduce
an improved defunctionalization algorithm that transforms higher-order
functions into first-order ones, so that existing techniques for termination
analysis and propagation of binding-times of first-order programs can be
applied. Then, we define another transformation (tailored to defunction-
alized programs) that allows us to get the accuracy of a polyvariant BTA
from a monovariant BTA over the transformed program. Finally, we show
a summary of experimental results that demonstrate the usefulness of our
approach.

1 Introduction

Partial evaluation [14] aims at specializing programs w.r.t. part of their input
data (the static data). Partial evaluation may proceed either online or offline.
Online techniques implement a single, monolithic procedure that specializes the
program while dynamically checking that the termination of the process is kept.
Offline techniques, on the other hand, have two clearly separated phases. The
aim of the first phase, the so called binding-time analysis (BTA), is basically
the propagation of the static information provided by the user. A BTA should
also ensure that the specialization process terminates; for this purpose, it often
includes a termination analysis of the program. The output of this phase is an
annotated program so that the second phase—the proper specialization—only
needs to follow these annotations (and, thus, it runs faster than in the online
approach).

Narrowing-driven partial evaluation [2] is a powerful technique for the spe-
cialization of functional (logic) programs based on the narrowing principle [21],
a conservative extension of rewriting to deal with logic variables (i.e., unknown

? This work has been partially supported by the EU (FEDER) and the Spanish
MEC/MICINN under grants TIN2005-09207-C03-02, TIN2008-06622-C03-02, and
Acción Integrada HA2006-0008, by SES-ANUIES and by DGEST (México).



information in our context). An offline approach to narrowing-driven partial eval-
uation has been introduced in [17]. In order to improve its accuracy, [6] adapts a
size-change analysis [15] to the setting of narrowing. This analysis is then used
to detect potential sources of non-termination, so that the arguments that may
introduce infinite loops at partial evaluation time are annotated to be generalized
(i.e., replaced by fresh variables).

Unfortunately, the size-change analysis of [6] and the associated BTA suf-
fer from several limitations. Firstly, the size-change analysis is only defined for
first-order functional programs, thus limiting its applicability. And, secondly,
the associated binding-time analysis is monovariant, i.e., a single sequence of
binding-times3 is associated to the arguments of a given function and, thus, all
calls to the same function are treated in the same way, which implies a consid-
erable loss of accuracy.

In this work, we present a transformational approach to overcome the above
drawbacks. Basically, we first transform the original higher-order program by
defunctionalization [18]. In particular, we introduce an extension of previous
defunctionalization techniques (like [4, 12]) that is specially tailored to improve
the accuracy of the size-change analysis. Then, we introduce a source-to-source
transformation that aims at improving the accuracy of both the size-change
analysis and the associated BTA by making explicit the binding-times of every
argument of a function. In this way, every function call with different binding-
times can be treated differently. Thanks to this transformation, one can get the
same accuracy by using a monovariant BTA over the transformed program as
by using a polyvariant BTA (where several binding-times can be associated to a
given function) over the original program.

defunctionalization
program

polyvariant
transformation

monovariant BTA
(first−order)

specializer
program

first−order
higher−order specialized

The paper is organized as follows. After some preliminaries, Sect. 3 introduces
our defunctionalization technique in a stepwise manner. Then, Sect. 4 presents
a polyvariant transformation that makes explicit the binding-times of functions.
Section 5 shows a summary of the experimental results conducted to evaluate
the usefulness of the approach. Finally, Sect. 6 discusses some related work and
concludes.

2 Preliminaries

Term rewriting [7] offers an appropriate framework to model the first-order com-
ponent of many functional (logic) programming languages. Therefore, in the re-
mainder of this paper we follow the standard framework of term rewriting for
developing our results.
3 We consider the usual binding-times: static (definitely known at partial evaluation

time) and dynamic (possibly unknown at partial evaluation time).



A term rewriting system (TRS for short) is a set of rewrite rules l = r
such that l is a nonvariable term and r is a term whose variables appear in l;
terms l and r are called the left-hand side and the right-hand side of the rule,
respectively. Given a TRS R over a signature F , the defined symbols D are
the root symbols of the left-hand sides of the rules and the constructors are
C = F \ D. We restrict ourselves to finite signatures and TRSs. We denote the
domain of terms and constructor terms by T (F ,V) and T (C,V), respectively,
where V is a set of variables with F ∩ V = ∅.

A TRS R is constructor-based if the left-hand sides of its rules have the
form f(s1, . . . , sn) where si are constructor terms, i.e., si ∈ T (C,V), for all
i = 1, . . . , n. The set of variables appearing in a term t is denoted by Var(t). A
term t is linear if every variable of V occurs at most once in t. R is left-linear if
l is linear for all rules l = r ∈ R. The definition of f in R is the set of rules in
R whose root symbol in the left-hand side is f .

The root symbol of a term t is denoted by root(t). A term t is operation-
rooted (resp. constructor-rooted) if root(t) ∈ D (resp. root(t) ∈ C). As it is
common practice, a position p in a term t is represented by a sequence of natural
numbers, where ε denotes the root position. Positions are used to address the
nodes of a term viewed as a tree: t|p denotes the subterm of t at position p and
t[s]p denotes the result of replacing the subterm t|p by the term s. A term t is
ground if Var(t) = ∅. A term t is a variant of term t′ if they are equal modulo
variable renaming. A substitution σ is a mapping from variables to terms such
that its domain Dom(σ) = {x ∈ V | x 6= σ(x)} is finite. The identity substitution
is denoted by id. Term t′ is an instance of term t if there is a substitution σ with
t′ = σ(t). A unifier of two terms s and t is a substitution σ with σ(s) = σ(t). In
the following, we write on for the sequence of objects o1, . . . , on.

In the remainder of this paper, we consider inductively sequential TRSs [3] as
programs, a subclass of left-linear constructor-based TRSs. Essentially, a TRS is
inductively sequential when all its operations are defined by rewrite rules that,
recursively, make on their arguments a case distinction analogous to a data type
(or structural) induction, i.e., typical functional programs.

3 Defunctionalization

In this section, we introduce a stepwise transformation that takes a higher-
order program and returns a first-order program (a term rewrite system). In
contrast to standard defunctionalization algorithms, we perform a restricted form
of variable instantiation and unfolding (see step 2 below) so that more higher-
order information is made explicit. Although it may increase code size, the next
steps of the BTA—size-change analysis and propagation of binding-times—can
exploit it for producing more accurate results; hopefully, this code size increase
is then removed in the specialization phase (see the benchmarks in Sect. 5).

We present our improved defunctionalization technique in a stepwise manner:

1. The first step makes both applications and partial function calls explicit.



2. Then, the second step instantiates functional variables with all possible par-
tial function calls.

3. Finally, if after reducing applications4 as much as possible the program still
contains some applications, the third step adds an appropriate definition for
the application function.

3.1 Making Applications and Partial Calls Explicit

First, we make every application of the higher-order program explicit by us-
ing the fresh function apply. Also, we distinguish partial applications from to-
tal functions. In particular, partial applications are represented by means of
the fresh constructor symbol partcall. Total calls are denoted in the usual way,
e.g., f(tn) for some defined function symbol f/n. A partial call is denoted
by partcall(f, k, tm) where f/n is a defined function symbol, 0 < k ≤ n, and
m+k = n, i.e., tm are the first m arguments of f/n but there are still k missing
arguments (if k = n, then the partial application has no arguments, i.e., we
have partcall(f, n)).5 For simplicity, in the following we consider that partcall is a
variadic function; nevertheless, one can formalize it using a function with three
arguments so that the third argument is a (possibly empty) list with the already
applied arguments.

Once all applications are made explicit with apply and partcall, we apply the
following transformation to the right-hand sides as much as possible:

apply(partcall(f, k, tm), tm+1) =
{

f(tm+1) if k = 1
partcall(f, k − 1, tm+1) if k > 1 (∗)

This is useful to avoid unnecessary applications in the defunctionalized program
when enough information is available to reduce them statically.

In the following, we assume that every program contains an entry function,
called main, which is defined by a single rule of the form (main x1 . . . xn = r),
with x1, . . . , xn ∈ V different variables, and that the program contains no call
to this distinguished function. Furthermore, we consider that run time calls to
main have only constructor terms (i.e., values) as arguments; this is required to
avoid the introduction of higher-order expressions which are not in the program.

Example 1. Consider the following higher-order program R1 (as it is common
practice, we use a curried notation for higher-order programs):

main xs = map inc xs map f [ ] = [ ]
inc x = Succ x map f (x : xs) = f x : map f xs

4 Basically, every expression of the form apply(partcall(. . .), . . .) can be reduced, where
apply is the application function and partcall denotes a partial function call.

5 A similar representation is used in FlatCurry, the intermediate representation of the
functional logic programming language Curry [11].



where natural numbers are built from Z and Succ and lists are built from [ ] and
“:”. First, we make all applications and partial calls explicit:

main(xs) = apply(apply(partcall(map, 2), partcall(inc, 1)), xs)
map(f, [ ]) = [ ]
map(f, x : xs) = apply(f, x) : apply(apply(partcall(map, 2), f), xs)
inc(x) = Succ(x)

Then, we reduce all calls to apply with a partial call as a first argument using
the transformation (∗) above so that we get the transformed program R2:

main(xs) = map(partcall(inc, 1), xs) map(f, [ ]) = [ ]
inc(x) = Succ(x) map(f, x : xs) = apply(f, x) : map(f, xs)

3.2 Instantiation of Functional Variables.

In the next step, we instantiate the functional variables of the program so that
some applications can hopefully be reduced. This is the main difference w.r.t.
previous defunctionalization algorithms. In the following, we say that a variable
is a functional variable if it can be bound (at run time) to a partial call. Now,
we replace every functional variable by all possible partial applications.

Let pcallsR be the set of function symbols that appear in the partcall’s of
R, i.e.,

pcallsR = {f/n | partcall(f, k, t1, . . . , tm) occurs in R, with k + m = n}

Then, for each function f/n ∈ pcallsR with type6

τ1 7→ . . . 7→ τn 7→ . . . 7→ τk 7→ τk+1 (n ≤ k)

we replace each rule l[x]p = r where x is a functional variable of type

τ ′j 7→ . . . 7→ τ ′k 7→ τ ′k+1

and 1 ≤ j ≤ n (so that some argument is still missing), by the instances

σ(l[x]p = r) where σ = {x 7→ partcall(f, n− j + 1, x1, . . . , xj−1)}

with x1, . . . , xj−1 different fresh variables (if j = 1, no argument is added to the
partial call). Clearly, we refer above to the types inferred in the original higher-
order program. Nevertheless, if no type information is available, one could just
instantiate the rules with all possible partial calls; this might introduce some
useless rules but would be safe. For instance, consider the rule

f(x, xs) = map(x, xs)

6 Observe that n < k implies that function f returns a functional value.



where x is a functional variable of type IN 7→ IN . Given the function sum/2 ∈
pcallsR with type IN 7→ IN 7→ IN , we replace the rule above by the following
instance:

f(partcall(sum, 1, n), xs) = map(partcall(sum, 1, n), xs)

The instantiation of rules is applied repeatedly until no rule with a functional
variable appears in the program.7 Then, as in the previous step, we apply the
transformation (∗) above as much as possible to the right-hand sides of the
program. The following example illustrates this instantiation process.

Example 2. Consider again the transformed program R2 of Example 1. We have
pcallsR2 = {inc/1}. There is only one functional variable f (with type τ1 7→ τ2)
in the rules defining map, hence we produce the following instantiated rules:

map(partcall(inc, 1), [ ]) = [ ]
map(partcall(inc, 1), x : xs) = apply(partcall(inc, 1), x) : map(partcall(inc, 1), xs)

Now, by reducing all calls to apply with a partcall as a first argument, we get the
transformed program R3:

main(xs) = map(partcall(inc, 1), xs)
map(partcall(inc, 1), [ ]) = [ ]
map(partcall(inc, 1), x : xs) = inc(x) : map(partcall(inc, 1), xs)
inc(x) = Succ(x)

Note that map(partcall(inc, 1), . . .) should be understood as a fresh function,
e.g., we could rewrite the program as follows:

main(xs) = mapinc(xs) mapinc([ ]) = [ ]
inc(x) = Succ(x) mapinc(x : xs) = inc(x) : mapinc(xs)

Observe that no call to apply occurs in the final program and, thus, there is no
need to add a definition for apply (i.e., the next step would not be necessary for
this example). Determining the class of programs for which we can guarantee
that no occurrence of apply appears in the transformed programs is an interesting
subject for future work.

Let us note that this step of the transformation is safe since main can only
be called with constructor terms as arguments. Otherwise, functional variables
should be instantiated with all possible partial applications and not only those
in pcallsR. On the other hand, not all instantiations of functional variables will
be reachable from main. The use of a closure analysis may improve the accuracy
of the transformed program (but it will also add a significant time overhead in
the defunctionalization process).

7 Note that a function may have several functional arguments and, thus, we could
apply the instantiation process to the instantiations of a rule previously considered.



3.3 Adding an Explicit Definition of apply.

In contrast to standard defunctionalization techniques (like [4, 12]), the trans-
formation process so far may produce a first-order program with no occurrences
of function apply in many common cases (as in the previous example).

In other cases, however, some occurrences of apply remain in the transformed
program and a proper definition of apply should be added. This is the case, e.g.,
when there is a call to apply with a function call as a first argument. In this case,
the value of the partial call will not be known until run time and, thus, we add
the following sequence of rules:

apply(partcall(f, n), x1) = partcall(f, n− 1, x1)
apply(partcall(f, n− 1, x1), x2) = partcall(f, n− 2, x1, x2)
. . .
apply(partcall(f, 1, x1, . . . , xn−1), xn) = f(x1, . . . , xn)

for each function symbol f/n ∈ pcallsR.
Our defunctionalization process can be effectively applied not only to pro-

grams using simple constructs such as (map f . . .) but also to programs that
make essential use of higher-order features, as the following example illustrates.

Example 3. Consider the following higher-order program from [20]:

main x y = f x y
g r a = r (r a) f Z = inc
inc n = Succ n f (Succ n) = g (f n)

where natural numbers are built from Z and Succ. The first step of the defunc-
tionalization process returns

main(x, y) = apply(f(x), y)
g(r, a) = apply(r, apply(r, a)) f(Z) = partcall(inc, 1)
inc(n) = Succ(n) f(Succ(n)) = partcall(g, 1, f(n))

Here, pcallsR = {inc/1, g/2}. We only have a functional variable r in the rule
defining function g (with associated type IN 7→ IN) and, therefore, the following
instances of the rules defining function g are added:

g(partcall(inc, 1), a) = apply(partcall(inc, 1), apply(partcall(inc, 1), a))
g(partcall(g, 1, x), a) = apply(partcall(g, 1, x), apply(partcall(g, 1, x), a))

By reducing all calls to apply with a partcall as a first argument, we get

main(x, y) = apply(f(x), y) f(Z) = partcall(inc, 1)
g(partcall(inc, 1), a) = inc(inc(a)) f(Succ(n)) = partcall(g, 1, f(n))
g(partcall(g, 1, x), a) = g(x, g(x, a)) inc(n) = Succ(n)

Finally, since an occurrence of function apply remains in the program, we add
the following rules:

apply(partcall(inc, 1), x) = inc(x)
apply(partcall(g, 2), x) = partcall(g, 1, x)
apply(partcall(g, 1, x), y) = g(x, y)



The correctness of our defunctionalization transformation is an easy extension
of that in [4, 12] by considering that function apply is strict in its first argument
and, thus, our main extension, the instantiation of functional variables, is safe.

Note also that our approach is also safe at partial evaluation time where
missing information (in the form of logical variables) might appear since the
evaluation of higher-order calls containing free variables as functions is not al-
lowed in current implementations of narrowing (i.e., such calls are suspended to
avoid the use of higher-order unification [13]).

Regarding the code size increase due to our defunctionalization algorithm,
the fact that it makes more higher-order information explicit comes at a cost:
in the worst case, the source program can grow exponentially in the number of
functions (e.g., when the program contains partial calls to all defined functions).
Nevertheless, this case will happen only rarely and thus the code size increase is
generally reasonable. Furthermore, the subsequent specialization phase is usually
able to reduce the code (see Sect. 5).

4 Polyvariant Transformation

In this section, we introduce a source-to-source transformation that, given a
program R, returns a new program R′ that is semantically equivalent to R
but can be more accurately analyzed. Basically, our aim is to get the same
information from a monovariant BTA over the transformed program R′ as from
a polyvariant BTA over the original program R.

Intuitively speaking, we make a copy of each function definition for every
call with different binding-times for its arguments. For simplicity, we only con-
sider the basic binding-times s (static, known value) and d (dynamic, possibly
unknown value). The least upper bound over binding-times is defined as follows:

s t s = s s t d = d d t s = d d t d = d

The least upper bound operation can be extended to sequences of binding-times
in the natural way, e.g.,

sds t ssd = sdd sds t dsd = ddd sds t dss = dds

A binding-time environment is a substitution mapping variables to binding-
times. We will use the following auxiliary function Be (adapted from [14]) for
computing the binding-time of an expression:

Be[[x]]ρ = ρ(x) (if x ∈ V)
Be[[h(t1, . . . , tn)]]ρ = Be[[t1]]ρ t . . . tBe[[tn]]ρ (if h ∈ C ∪ D)

where ρ denotes a binding-time environment. Roughly speaking, an expression
(Be[[t]]ρ) returns s if t contains no variable which is bound to d in ρ, and d
otherwise.



poly trans({ }) = { }
poly trans({R} ∪ R) = poly trans(R)

∪

8>>>>>>><>>>>>>>:

{fbn
(tn) = pt(r, bte(f(tn), bn)) | bn ∈ BT n} if R = (f(tn) = r)

{applybn
(partcall(fbn−1

, k, xn−1), xn) = partcall(fbn
, k − 1, xn) | bn ∈ BT n}

if R = (apply(partcall(f, k, xn−1), xn) = partcall(f, k − 1, xn))

{applybn
(partcall(fbn−1

, k, xn−1), xn) = fbn
(xn) | bn ∈ BT n}

if R = (apply(partcall(f, k, xn−1), xn) = f(xn))

pc({ }) = { }

pc({R} ∪ R) =

8><>:
pc({f(t1, . . . , partcall(gbm

, k, tm), . . . , tn) = r | bm ∈ BT m} ∪ R)
if R = (f(tn) = r), ti = partcall(g, k, tm), i ∈ {1, . . . , n}

{R} ∪ pc(R) otherwise

pt(t, ρ) =

8>>>><>>>>:
t if t ∈ V
c(pt(tn, ρ)) if t = c(tn), c ∈ C
fbn

(pt(tn, ρ)) if t = f(tn), f ∈ D, Be[[ti]]ρ = bi, i = 1, . . . , n

partcall(fbn
, k, pt(tn, ρ)) if t = partcall(f, k, tn), Be[[ti]]ρ = bi, i = 1, . . . , n

applyb2
(pt(t1, ρ), pt(t2, ρ)) if t = apply(t1, t2), Be[[ti]]ρ = bi, i = 1, 2

Fig. 1. Polyvariant transformation: functions poly trans and pt

Given a linear term f(tn) (usually the left-hand side of a rule), and a se-
quence of binding-times bn for f , the associated binding-time environment,
bte(f(tn), bn), is defined as follows:

bte(f(tn), bn) = {x 7→ b1 | x ∈ Var(t1)} ∪ . . . ∪ {x 7→ bn | x ∈ Var(tn)}

Definition 1 (polyvariant transformation). Let R be a program and bn be
a sequence of binding-times for main/n. The polyvariant transformation of R
w.r.t. bn, denoted by Rbn

poly, is computed as follows:

Rbn

poly = { main(xn) = pt(r, bte(main(xn), bn)) | main(xn) = r ∈ R }
∪ poly trans(pc(R \ {main(xn) = r}))

where the auxiliary functions poly trans, pc and pt are defined in Fig. 1. Here,
we denote by BTn the set of all possible sequences of n binding-times.

Intuitively, the polyvariant transformation proceeds as follows:

– First, the left-hand side of function main is not labeled since there is no call
to main in the program. The right-hand side is transformed as any other
user-defined function using pt (see below).



– For the program rules (i.e., rules defining functions different from apply), we
first label the occurrences of partcall in the left-hand sides using auxiliary
function pc.8 Observe that the first case of the definition of pc includes
the transformed rule in the next recursive call since the left-hand side may
contain several partcall arguments; in the second case, when no occurrence
of partcall remains, the rule is deleted from the recursive call.
Then, we replace the resulting rules by a number of copies labeled with all
possible sequences of binding-times, whose right-hand sides are then trans-
formed using function pt. Here, we could restrict the possible binding-times
to those binding-times that are safe approximations of the arguments tm of
the partial call. However, we keep the current formulation for simplicity.

– Rules defining apply are transformed so that the binding-times of the partial
function and the new argument are made explicit. Observe that we label the
function symbol inside a partial call but not the partial call itself. Also, apply
is just labeled with the binding-time of their second argument; the binding-
time of the first argument is not needed since the binding-times labeling the
function inside the corresponding partial call already contains more accurate
information.

– Function pt takes a term and a binding-time environment and proceeds as
follows:
• Variables and constructor symbols are left untouched.
• Function calls are labeled with the binding-times of their arguments

according to the current binding-time environment. Function symbols in
partial calls are also labeled in the same way.

• Applications and partial calls are labeled as in function poly trans.

Observe that labeling functions with all possible sequences of binding-times pro-
duces usually a significant increase of code size. Clearly, one could perform a
pre-processing analysis to determine the call patterns f(b′m) that may occur from
the initial call to main(bn). This approach, however, will involve a similar com-
plexity as constructing the higher-order call graph of [20]. Here, we preferred to
trade time complexity for space complexity. Furthermore, many of these copies
are dead code and will be easily removed in the partial evaluation stage (see
Sect. 5).

Example 4. Consider the defunctionalized program R of Example 3:

main(x, y) = apply(f(x), y) f(Z) = partcall(inc, 1)
g(partcall(inc, 1), a) = inc(inc(a)) f(Succ(n)) = partcall(g, 1, f(n))
g(partcall(g, 1, x), a) = g(x, g(x, a)) inc(n) = Succ(n)
apply(partcall(g, 2), x) = partcall(g, 1, x) apply(partcall(inc, 1), x) = inc(x)
apply(partcall(g, 1, x), y) = g(x, y)

8 For clarity, we assumed that all occurrences of partcall appear at the top level of
arguments, i.e., either the argument ti has the form partcall(. . .) or it contains no
occurrences of partcall.



Given the initial binding-times sd, our polyvariant transformation produces the
following program Rsd

poly:9

main(x, y) = applyd(fs(x), y)

fs(Z) = partcall(inc, 1)
fs(Succ(n)) = partcall(gs, 1, fs(n))

incs(n) = Succ(n)
incd(n) = Succ(n)

gsd(partcall(inc, 1), a) = incd(incd(a))
gsd(partcall(gs, 1, x), a) = gsd(x, gsd(x, a))

applyd(partcall(inc, 1), x) = incd(x)
applyd(partcall(gs, 1, x), y) = gsd(x, y)

The next section presents a summary of an experimental evaluation conducted
with a prototype implementation of the partial evaluation.

5 The Transformation in Practice

In this section, we present a summary of our progress on the development of a
partial evaluator that follows the ideas presented so far. The undertaken imple-
mentation follows these directions:

– The system accepts higher-order programs which are first transformed us-
ing the techniques of Sect. 3 (defunctionalization) and Sect. 4 (polyvariant
transformation).

– Then, the standard size-change analysis of [6] (for first-order programs) is
applied to the transformed program.

– Finally, we annotate the program using the output of the size-change analysis
and apply the specialization phase of the existing offline partial evaluator [17,
6]. We note that no propagation of binding-times is required here10 since this
information is already explicit in every function call thanks to the polyvariant
transformation.

Table 1 shows the effectiveness of our transformation over the following ex-
amples: ack, the well known Ackermann’s function, which is specialized for a
given first argument; bulyonkov, a slight extension of the running example in
[9]; combinatorial, a simple program including the computation of combina-
torials; changeargs, another variation of the running example in [9]; dfib, a
higher-order example that uses the well-known Fibonacci’s function; dmap, a
9 Actually, the transformation produces some more (useless) rules that we do not show

for clarity. Note also that, according to our technique, the occurrence of inc in the
expression partcall(inc, 1) should be labeled with an empty sequence of binding-times.
However, for simplicity, we write just inc.

10 In the original scheme, the binding-time of every function argument is required in
order to identify static loops that can be safely unfolded.



Table 1. Benchmark results (run times, milliseconds)

benchmark original specialized poly specialized

run time run time speedup run time speedup

ack 1526 507 3.01 522 2.92
bulyonkov 559 727 0.77 402 1.39
combinatorial 991 887 1.12 612 1.62
changeargs 772 1157 0.67 478 1.62

dfib (HO) 326 294 1.11 95 3.43
dmap (HO) 905 427 2.12 885 1.02

Average 760 602 1.26 416 1.83

Table 2. Benchmark results (code size, bytes)

benchmark original specialized poly specialized

size size variation size variation

ack 951 3052 3.21 4168 4.38
bulyonkov 2250 3670 1.63 2440 1.08
combinatorial 2486 3546 1.43 6340 2.55
changeargs 3908 5335 1.37 5599 1.43

dfib (HO) 2911 4585 1.58 6204 2.12
dmap (HO) 2588 5236 2.02 3279 1.27

Average 2321 4147 1.79 4408 1.90

higher-order example with a function to map two functions to every element of
a list.

For the first-order examples, we considered the previous offline partial evalua-
tor of [17, 6], the only difference being that in the last two columns the considered
program is first transformed with the polyvariant transformation. As it can be
seen, the polyvariant transformation improves the speedups in three out of four
examples.

For the higher-order examples, since the previous offline partial evaluator did
not accept higher-order programs, we compare the new offline partial evaluator
with an online partial evaluator for Curry that accepts higher-order functions
[1]. In this case, we get an improvement in one of the examples (dfib) and a
slowdown in the other one (dmap). This result is not surprising since an online
partial evaluator is usually able to propagate much more information than an
offline partial evaluator. Nevertheless, the important remark here is that we are
able to deal with programs that could not be dealt with the old version of the
offline partial evaluator.

Averages are obtained from the geometric mean of the speedups.
A critical issue of our transformation is that it might produce a significant

increase of code size. This is explored in Table 2. Here, although the size of
residual programs produced with our approach is slightly bigger than the size
of residual programs obtained with previous approaches, it is still reasonable.
Actually, our benchmarks confirm that most of the (dead) code added in the



polyvariant transformation has been removed at specialization time. Neverthe-
less, producing intermediate programs with are too large might be problematic
if memory is exhausted. Thus we are currently considering the definition of some
program analysis that can be useful for avoiding the introduction of (potentially)
dead code during the transformation process.

6 Related Work and Conclusions

Let us first review some related works. Defunctionalization was first introduced
by Reynolds [18] (see also [10], where a number of applications are presented).
Defunctionalization has already been used in the context of partial evaluation
(see, e.g., [8]) as well as in the online approach to narrowing-driven partial evalu-
ation [1]. The main novelty w.r.t. these approaches is that we introduced a more
aggressive defunctionalization by instantiating functional variables with all pos-
sible partial calls. Although it may increase code size, the transformed program
has more information explicit and both size-change analysis and specialization
may often produce better results.

Size-change analysis has been recently extended to higher-order functional
programs in [20]. In contrast to our approach, Sereni proposes a direct approach
over higher-order programs that requires the construction of a complex call graph
which might produce less efficient binding-time analyses. We have applied our
technique to the example in [20] and we got the same accuracy (despite the use
of defunctionalization). A deeper comparison is the subject of ongoing work.

Regarding the definition of transformational approaches to polyvariant BTA,
we only found the work of [9]. In contrast to our approach, Bulyonkov duplicates
the function arguments so that, for every argument of the original function, there
is another argument with its binding-time. Furthermore, some additional code to
compute the binding-times of the calls in the right-hand sides of the functions is
added. Then, a first stage of partial evaluation is run with some concrete values
for the binding-time arguments of some function. As a result, the specialized
program may include different versions of the same function (for different com-
binations of binding-times). Then, partial evaluation is applied again using the
actual values of the static arguments. Our approach replaces the first stage of
transformation and partial evaluation by a simpler transformation based on du-
plicating code and labeling function symbols. No experimental comparison can
be made since we are not aware of any implementation of Bulyonkov’s approach.

Other approaches to polyvariant BTA of higher-order programs include Mo-
gensen’s work [16] for functional programs and Vanhoof’s modular approach [22]
for Mercury programs. In contrast to our approach, Mogensen presents a direct
(i.e., not based on defunctionalization) approach for polyvariant BTA of higher-
order functional programs.11 Vanhoof’s approach is also a direct approach to
polyvariant BTA of higher-order Mercury programs. A nice aspect of [22] is that
no closure analysis is required, since closures are encapsulated in the notion
11 Actually, Mogensen’s approach includes some steps that resemble a defunctionaliza-

tion process but never adds a definition for an explicit application function.



of binding-time. The integration of some ideas from [22] in our setting could
improve the accuracy of the method and reduce the increase of code size.

Other related approaches to improve the accuracy of termination analysis by
labeling functions can be found in [19], which is based on a standard technique
from logic programming [5]. Here, some program clauses are duplicated and la-
beled with different modes—the mode of an argument can be input, if it is known
at call time, or output, if it is unknown—in order to have a well-moded program
where every call to the same predicate has the same modes. This technique can
be seen as a simpler version of our polyvariant transformation.

To summarize, in this work we have introduced a transformational approach
to polyvariant BTA of higher-order functional programs. Our approach is based
on two different transformations: an improved defunctionalization algorithm that
makes as much higher-order information explicit as possible, together with a
polyvariant transformation that improves the accuracy of the binding-time prop-
agation. We have developed a prototype implementation of the complete par-
tial evaluator, the first offline narrowing-driven partial evaluator that deals with
higher-order programs and produces polyvariant specializations. Our experimen-
tal results are encouraging and point out that the new BTA is efficient and still
sufficiently accurate.

As for future work, there are a number of interesting issues that we plan
to investigate further. As mentioned above, [22] presents some ideas that could
be adapted to our setting in order to improve the accuracy of the BTA and to
avoid the code explosion due to the absence of a separate closure analysis in our
transformation. Also, the use of more refined binding-time domains (including
partially static information as in, e.g., [16, 22]) may improve the accuracy of the
specialization at a reasonable cost.
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