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Abstract. We present the basis of a source-level profiler for multi-
paradigm declarative languages which integrate features from (lazy) func-
tional and logic programming. Our profiling scheme is symbolic in the
sense that it is independent of the particular language implementation.
This is achieved by counting the number of basic operations performed
during the execution of program calls, e.g., the number of unfolding
steps, the number of matching operations, etc. The main contribution
of this paper is the formal specification of the attribution of execution
costs to cost centers, which is particularly difficult in the context of lazy
languages. A prototype implementation of the symbolic profiler has been
undertaken for the multi-paradigm language Curry. Preliminary results
demonstrate the practicality of our approach and its applications in the
field of program transformation.

1 Introduction

Profiling tools, in general, are designed for assisting the programmer in the task
of generating efficient code (see, e.g., [12]). By analyzing the profiling results, the
programmer may find those parts of the program which dominate the execution
time. As a consequence of this, the code may be changed, recompiled and profiled
again, in hopes of improving efficiency. In the field of program transformation,
in particular, we believe that profiling techniques can play an important role:

1. The most immediate application consists of using the information gathered by
the profiler to assess the effectiveness of a program transformation. This can
be done by simply comparing the cost information obtained for the original
and the transformed programs. For instance, as we shall see later, we use our
profiler to decide whether the optimization of a program function actually
provides an improvement over the original function.

2. In the context of automatic program transformation techniques, profiling
tools can assist the transformation process in the task of identifying those
program calls which are promising candidates to be optimized. For instance,
partial evaluation is an automatic program transformation technique which
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specializes a given program w.r.t. part of its input data [22]. Some partial
evaluators require the user to annotate the program calls to be optimized
by partial evaluation (e.g., [4]). In these cases, profiling tools could play an
important role in order to automate the process, e.g., they could help in the
task of detecting which are the most expensive functions and, thus, promis-
ing candidates to be partially evaluated. However, note that the most ex-
pensive functions are not the only interesting ones to be partially evaluated.
In fact, sometimes the specialization of computationally inexpensive—but
often called functions—can lead to dramatic speedups.

3. A further step along the lines of the previous point would be to integrate the
profiler within a program transformation tool. For instance, the extension of
a partial evaluator with the computation of cost information may be use-
ful to determine the improvement achieved by a particular transformation
process. A first step towards this direction can be found in [29], where the
partial evaluator returns not only the set of residual rules, but also the cost
improvement achieved by each rule. The computation of cost information
during partial evaluation could also be used to guide the specialization pro-
cess, e.g., to decide when to evaluate and when to residualize an expression
depending on the computed costs.

Our work is concerned with the development of a profiling scheme to assist
automatic transformation techniques for multi-paradigm declarative languages.
Recent proposals for multi-paradigm declarative programming amalgamate prin-
ciples from functional, logic and concurrent programming [16]. The resulting lan-
guage includes the most important features of the distinct paradigms, e.g., lazy
evaluation, higher-order functions, nondeterministic computations, concurrent
evaluation of constraints with synchronization on logical variables, and a unified
computation model which integrates narrowing and residuation [16].

Rather surprisingly, there are very few profiling tools for high-level declar-
ative languages. The reason can be found in the difficulty to relate low-level
operations with high-level code [27]. This is particularly difficult in the presence
of a lazy evaluation mechanism, since the execution of nested calls is interleaved
and each part of the execution must be attributed to the right function call.

Two features characterize our profiler: the basic scheme is defined for the
source language, unlike traditional profilers which work by regularly interrupt-
ing the compiled program—hence, the attribution of costs to the user’s program
constructions is straightforward—and it is symbolic, in the sense that it is inde-
pendent of a particular implementation of the language—thus, we do not return
actual execution times but a list of symbolic measures: the number of com-
putation steps, the number of allocated cells, the number of nondeterministic
branching points, and the number of pattern matching operations.1 Moreover,
the user may annotate the source program with cost centers to which execu-
tion costs are attributed. We define a formal specification, or cost semantics,
1 Nevertheless, the experiments in Section 5 indicate that the speedup predicted using

our symbolic cost criteria is a good approximation of the real speedup measured
experimentally.
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to describe the attribution of costs to cost centers. The specification is given
for programs in flat form, a sort of intermediate representation used during the
compilation of (higher-level) source programs [9, 17, 25]. Nevertheless, we could
say that our profiler is defined at a source-level since the transformation from
high-level to flat programs consists mainly in a “desugaring” process. The flat
representation was originally designed to provide a common interface for con-
necting different tools working on functional logic programs. Furthermore, the
definition is general enough to cover also other declarative languages, e.g., purely
functional or logic languages. This allows people working on programming tools
for similar languages (e.g., compiler back-ends, program optimizers) to develop
them on the basis of the intermediate representation so that they can exchange
or integrate such tools.

This paper establishes a setting in which one can discuss costs attribution,
formal properties about costs, or the effects of some program transformations
in the context of multi-paradigm declarative languages. Moreover, we provide
some preliminary results from the prototype implementation of a profiler for
the multi-paradigm declarative language Curry [19]. They show evidence of the
practicality of our approach and its applications in the field of program transfor-
mation. For instance, a partial evaluator has been recently developed for Curry
programs [3, 4]. This partial evaluation tool starts out from a program with some
annotated function calls and produces (potentially) more efficient, residual def-
initions for the annotated function calls. Our profiler has been greatly useful
to estimate the effectiveness of this partial evaluator, i.e., to determine the effi-
ciency speedups achieved by the partial evaluator for a given annotated program
(we refer here to the application stressed in the first item at the beginning of
this section). As we will see in Section 5, the idea is to simply perform the pro-
filing of those expressions previously annotated to be partially evaluated (i.e.,
cost centers are introduced on the same expressions to be specialized). Thus,
the profiling results allow us to assess whether significant performance improve-
ments have been achieved by the specialization phase. A further step would be
to use the profiler for deciding on which expressions the annotations should be
introduced (as discussed in the second item at the beginning of this section).
This application is a subject of ongoing research.

The rest of the paper is organized as follows. Section 2 informally describes
the source language as well as its operational semantics. Section 3 introduces
some symbolic cost criteria and outlines the profiling scheme. The specification
of our cost semantics for profiling is formally described in Section 4. Section 5
summarizes our experiments with an implementation of the profiler for Curry.
Section 6 compares with related work. Finally, Section 7 concludes and points
out several directions for further research.

2 The Source Language

We consider modern multi-paradigm languages which integrate the most impor-
tant features of functional and logic programming (like, e.g., Curry [19] or Toy
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[24]). In our source language, functions are defined by a sequence of rules:

f(c1, . . . , cn) = t

where c1, . . . , cn are constructor terms and the right-hand side t is an arbitrary
term. Constructor terms may contain variables and constructor symbols, i.e.,
symbols which are not defined by the program rules. Functional logic programs
can be seen as term rewriting systems fulfilling several conditions (e.g., induc-
tively sequential systems [8]). Several implementations allow the use of a number
of additional features, like higher-order functions, (concurrent) constraints, ex-
ternal (built-in) calls, monadic I/O, nondeterministic functions, etc. We do not
describe these features here but refer to [19].

Example 1. Let us consider the following rules defining the well-known function
append (where [] denotes the empty list and x:xs a list with first element x
and tail xs):2

append eval flex
append [] ys = ys
append (x:xs) ys = x : append xs ys

The evaluation annotation “eval flex” declares append as a flexible function
which can also be used to solve equations over functional expressions (see below).
For instance, the equation “append p s =:= [1,2,3]” is solved by instantiating
the variables p and s to lists so that their concatenation results in the list
[1,2,3].

The basic operational semantics of our source language is based on a combination
of needed narrowing and residuation [16]. The residuation principle is based on
the idea of delaying function calls until they are ready for a deterministic evalu-
ation (by rewriting). Residuation preserves the deterministic nature of functions
and naturally supports concurrent computations. On the other hand, the nar-
rowing mechanism allows the instantiation of free variables in expressions and,
then, applies reduction steps to the instantiated expressions. This instantiation
is usually computed by unifying a subterm of the entire expression with the
left-hand side of some program rule. To avoid unnecessary computations and to
deal with infinite data structures, demand-driven generation of the search space
has recently been advocated by a flurry of outside-in, lazy narrowing strategies.
Due to some optimality properties, needed narrowing [8] is currently the best
lazy narrowing strategy for functional logic programs.

The precise mechanism—narrowing or residuation—for each function is spec-
ified by evaluation annotations. The annotation of a function as rigid forces the
delayed evaluation by rewriting, while functions annotated as flexible can be
evaluated in a nondeterministic manner by applying narrowing steps. For in-
stance, in the language Curry [19], only functions of result type “Constraint”
are considered flexible (and all other functions rigid). Nevertheless, the user can

2 Although we consider a first-order representation for programs, we use a curried
notation in the examples as it is common practice in functional languages.
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explicitly provide different evaluation annotations. To provide concurrent com-
putation threads, expressions can be combined by the concurrent conjunction
operator “&,” i.e., the expression e1 & e2 can be reduced by evaluating either e1
or e2.

3 Symbolic Profiling

Our profiling scheme relies on the introduction of some symbolic costs which are
attributed to specific cost centers. Our symbolic costs are used to represent the
basic operations performed during the evaluation of expressions. They are coher-
ent with the cost criteria introduced in [1, 10] to measure the cost of functional
logic computations. The main novelty lies in the introduction of a particular cri-
terium to measure the creation and manipulation of nondeterministic branching
points (which are similar to choice points in logic programming). The costs of
a particular functional logic computation are attributed by adding the costs of
performing each step of the computation. Thus, we only define the symbolic costs
associated to the application of a single rule:

– Number of unfolding steps. Trivially, the number of steps associated to the
application of a program rule is 1.

– Number of pattern matching operations. It is defined as the number of con-
structor symbols in the left-hand side of the applied rule.

– Number of nondeterministic steps. This cost abstracts the work needed either
to create, update or remove a choice point. It is equal to 0 when the function
call matches exactly one program rule, and 1 otherwise. Thus, in principle,
we do not accumulate the work performed in previous choices. Nevertheless,
in the implementation, we wish to be more flexible and allow the user to
indicate (by means of a flag) whether the cost of former nondeterministic
branches should also be accrued to the current branch. This is particularly
interesting in the presence of failing derivations, as will be shown in Section 5.
Unfortunately, the formalization of this approach is not easy: by simply
accumulating the cost of all previous derivations to the current one, we
probably count the same costs several times since, for instance, two different
derivations may share all the steps but the final one. In order to overcome
this problem, a new semantics definition which takes into account the search
strategy is required. This is subject of ongoing work (see [2]).

– Number of applications. Following [10], we define the number of applications
associated to applying a program rule as the number of non-variable symbols
(of arity greater than zero) in the right-hand side of this rule, plus the arities
of these symbols. This cost intends to measure the time needed for the storage
that must be allocated for executing a computation, i.e., for allocating the
expressions in the right-hand sides of the rules.

Profilers attribute execution costs to “parts” of the source program. Tradition-
ally, these “parts” are identified with functions or procedures. Following [27], we
take a more flexible approach which allows us to associate a cost center with

5



each expression of interest. This provides the programmer with the possibility of
choosing an appropriate granularity for profiling, ranging from whole program
phases to single subexpressions in a function. Nevertheless, our approach can
be easily adapted to work with automatically instrumented cost centers. For
instance, if one wants to use the traditional approach in which all functions are
profiled, we can automatically annotate each function by introducing a cost cen-
ter for the entire right-hand side (since, in the flat representation, each function
is defined by a single rule). Cost centers are marked with the (built-in) function
SCC (for Set Cost Center). For instance, given the program excerpt:

length app x y = length (append x y)
length [] = 0
length (x:xs) = (length xs) + 1

which uses the definition of append in Example 1, one can introduce the following
annotations:

length app x y = SCC cc2 (length (SCC cc1 (append x y)))

In this way, the cost of evaluating “append x y” is attributed to the cost center
cc1, while the cost of evaluating “length (append x y)” is attributed to the
cost center cc2 by excluding the costs already attributed to cc1.

We informally describe the attribution of costs to cost centers as follows.
Given an expression “SCC cc e”, the costs attributed to cc are the entire costs
of evaluating e as far as the enclosing context demands it,

– also including the cost of evaluating any function called during the evaluation
of the expression e,

– but excluding the cost of evaluating any SCC-expressions within e or within
any function called from e.

For example, given the initial call “length app (1:2:3:x) (4:5:[])”, the first
result that we compute is 5, with computed answer {x 7→ []} and associated
symbolic costs:

cc1: 4 steps (one for each element of the first input list, plus an additional
step to apply the base case, which instantiates x to []), 4 pattern match-
ings (one for each applied rule, since there is only one constructor symbol in
the left-hand sides of the rules defining append), 1 nondeterministic branch-
ing point (to evaluate the call append x (4:5:[])), and 18 applications (6
applications for each element of the first input list).

cc2: 6 steps (one for each element of the concatenated list, plus an additional
step to apply the base case), 6 pattern matchings (one for each applied
rule, since there is only one constructor symbol in the left-hand sides of
the rules defining length), 0 nondeterministic branching points (since the
computation is fully deterministic), and 25 applications (5 applications for
each element of the list).

The next section gives a formal account of the attribution of costs.
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4 Formal Specification of the Cost Semantics

This section formalizes a semantics enhanced with cost information for per-
forming symbolic profiling. Our cost-augmented semantics considers programs
written in flat form. In this representation, all functions are defined by a single
rule, whose left-hand side contains only different variables as parameters, and
the right-hand side contains case expressions for pattern-matching. Thanks to
this representation, we can define a simpler operational semantics, which will
become essential to simplify the definition of the associated profiling scheme.
The syntax for programs in the flat representation is formalized as follows:

R ::= D1 . . . Dm e ::= x (variable)
D ::= f(x1, . . . , xn) = e | c(e1, . . . , en) (constructor)

| f(e1, . . . , en) (function call)
p ::= c(x1, . . . , xn) | case e0 of {p1 → e1; . . . ; pn → en} (rigid case)

| fcase e0 of {p1 → e1; . . . ; pn → en} (flexible case)
| SCC (cc, e) (SCC-construct)

where R denotes a program, D a function definition, p a pattern and e an arbi-
trary expression. We write on for the sequence of objects o1, . . . , on. A program
R consists of a sequence of function definitions D such that the left-hand side is
linear and has only variable arguments, i.e., pattern matching is compiled into
case expressions. The right-hand side of each function definition is an expres-
sion e composed by variables, constructors, function calls, case expressions, and
SCC-constructs. The general form of a case expression is:

(f )case e of {c1(xn1) → e1; . . . ; ck(xnk
) → ek}

where e is an expression, c1, . . . , ck are different constructors of the type of e, and
e1, . . . , ek are arbitrary expressions. The variables xni are local variables which
occur only in the corresponding subexpression ei. The difference between case
and fcase only shows up when the argument e is a free variable: case suspends
(which corresponds to residuation) whereas fcase nondeterministically binds this
variable to the pattern in a branch of the case expression (which corresponds to
narrowing).

Example 2. By using case expressions, the rules of Example 1 defining the func-
tion append can be represented by a single rule as follows:

append x y = fcase x of { [] → y ;
(z:zs) → z : append zs y }

The standard semantics for flat programs is based on the LNT calculus (Lazy
Narrowing with definitional Trees [18]). In Fig. 1, we recall from [5] an extension
of the original LNT calculus able to cope with the combination of needed nar-
rowing and residuation (i.e., the operational semantics informally described in
Section 2). The calculus is defined by the one-step transition relation ⇒σ, which
is labeled with the substitution σ computed in the step. The application of the
substitution σ to an expression e is denoted by σ(e). Let us informally describe
the rules of the LNT calculus:
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HNF
c(e1, . . . , ei, . . . , en) ⇒σ σ(c(e1, . . . , e

′
i, . . . , en))

if ei is not a constructor term and ei ⇒σ e′i
Case Select
(f)case c(en) of {pm → e′m} ⇒id σ(e′i) if pi = c(xn) and σ = {xn 7→ en}
Case Guess

fcase x of {pm → em} ⇒σ σ(ei) if σ = {x 7→ pi}, i = 1, . . . , m

Case Eval

(f)case e of {pm → em} ⇒σ (f)case e′ of {pm → σ(em)}
if e is neither a variable nor a constructor-rooted
term and e⇒σ e′

Function Eval
f(en) ⇒id σ(e′) if f(xn) = e ∈ R is a rule with fresh

variables and σ = {xn 7→ en}

Fig. 1. LNT calculus

HNF. This rule can be applied to evaluate expressions in head normal form (i.e.,
rooted by a constructor symbol). It proceeds by recursively evaluating some
argument (e.g., the leftmost one) that contains unevaluated function calls.
Note that when an expression contains only constructors and variables, there
is no rule applicable and the evaluation stops successfully.

Case Select. It simply selects the appropriate branch of a case expression and
continues with the evaluation of this branch. The step is labeled with the
identity substitution id.

Case Guess. This rule applies when the argument of a flexible case expression
is a variable. Then, it nondeterministically binds this variable to a pattern
in a branch of the case expression. We additionally label the step with the
computed binding. Note that there is no rule to evaluate a rigid case expres-
sion with a variable argument. This situation produces a suspension of the
evaluation (i.e., an abnormal termination).

Case Eval. This rule can be only applied when the argument of the case construct
is a function call or another case construct. Then, it tries to evaluate this
expression. If an evaluation step is possible, we return the original expression
with the argument updated. The step is labeled with the same substitution
computed from the evaluation of the case argument, which is also propagated
to the different case branches.

Function Eval. Finally, this rule performs the unfolding of a function call.

This semantics is properly augmented with cost information, as defined by the
state-transition rules of Fig. 2. The state consists of a tuple 〈ccc, k, e〉, where ccc
is the current cost center, k is the accumulated cost, and e is the expression to
be evaluated. An initial state has the form 〈CC0,K0, e〉, where CC0 is the initial
cost center—to which all costs are attributed unless an SCC construct specifies
a different cost center—, K0 is the empty cost, and e is the initial expression
to be evaluated. Costs are represented by a set of cost variables ∈ {S, C, N,A}
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rule ccc cost expression ⇒ ccc cost expression

scc1 cc k SCC(cc′, e) ⇒σ cc k′ SCC(cc′, e′)
if e is a nonvariable expression which is not rooted by a constructor nor an SCC,
and cc′ k e ⇒σ cc′ k′ e′

scc2 cc k SCC(cc′, c(e1, . . . , en)) ⇒id cc k c(SCC(cc′, e1), . . . , SCC(cc′, en))

scc3 cc k SCC(cc′, x) ⇒id cc k x

scc4 cc k SCC(cc′, SCC(cc′′, e)) ⇒id cc k SCC(cc′′, e)

hnf cc k c(e1, . . . , ei, . . . , en) ⇒σ cc k′ σ(c(e1, . . . , e
′
i, . . . , en))

if ei is not a constructor term and cc k ei ⇒σ cc′ k′ e′i

c select cc k (f)case c(en) of {pm → e′m} ⇒id cc k′ σ(e′i)
if pi = c(xn), σ = {xn 7→ en}, and k′ = k[Ccc ← Ccc + 1]

c guess1 cc k fcase x of {pm → em} ⇒σ cc k′ σ(ei)
if σ = {x 7→ pi}, m = 1, and k′ = k[Ccc ← Ccc + 1]

c guess2 cc k fcase x of {pm → em} ⇒σ cc k′ σ(ei)
if σ = {x 7→ pi}, m > 1, and k′ = k[Ccc ← Ccc + 1, Ncc ← Ncc + 1]

c eval cc k (f)case e of {pm → em} ⇒σ cc k′ (f)case e′ of {pm → σ(em)}
if e is neither a variable nor an operation-rooted term
and cc k e ⇒σ cc′ k′ e′

fun eval cc k f(en) ⇒id cc k′ σ(e)
if f(xn) = e ∈ R is a rule with fresh variables, σ = {xn 7→ en}, and
k′ = k[Scc ← Scc + 1, Acc ← Acc + size(e)]

Fig. 2. Cost-augmented LNT calculus

indexed by the existing cost centers. Thus, given a cost center cc, Scc records
the number of steps attributed to cc, Ccc the number of case evaluations (or
basic pattern matching operations) attributed to cc, Ncc the number of nonde-
terministic branching points attributed to cc, and Acc the number of applications
attributed to cc.

Let us briefly describe the cost variations due to the application of each
state-transition rule of Fig. 2:

SCC rules. These rules are used to evaluate expressions rooted by an SCC sym-
bol. The first rule, scc1 , applies to expressions of the form SCC(cc′, e), where
e is a nonvariable expression which is not rooted by a constructor nor by
an SCC symbol. Basically, it performs an evaluation step on e and, then,
it returns the current cost center cc′ unchanged. Rules scc2 and scc3 prop-
agate SCC symbols to the arguments of a constructor-rooted expression,
or remove them when the enclosed expression is a variable or a constructor
constant. Note that rule scc2 does not increment the current cost with a
“constructor application”. This happens because the considered language is
first-order and, thus, the cost of constructor (or function) applications is only
considered when performing a function unfolding (in rule fun eval) in order
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to allocate the symbols in the right-hand sides of the rules. Finally, scc4
is used to remove an SCC construct when the argument is another SCC
construct. These rules could be greatly simplified under an eager evaluation
semantics. In particular, we would only need the rule:

〈cc, k, SCC(cc′, e)〉 ⇒σ 〈cc, k′, b〉 if 〈cc′, k, e〉 ⇒∗
σ 〈cc′, k′, b〉

where b is a value, i.e., a constructor term containing no unevaluated func-
tions. Thus, the main difference is that, within an eager calculus, inner
subexpressions could be fully evaluated and the SCC constructs could be
just dropped; meanwhile, in our lazy calculus, we must carefully keep and
appropriately propagate the SCC construct since the evaluation of an inner
subexpression could be demanded afterwards.

HNF. The hnf rule tries to evaluate some argument (of the constructor-rooted
term) which contains unevaluated function calls. If an evaluation step is pos-
sible, we return the original expression with the argument and the associated
cost updated.

Case select. Rule c select updates the current cost by adding one to Ccc, where
cc is the current cost center.

Case guess. In this case, the current cost is always updated by adding one to
Ccc, where cc is the current cost center, since a variable has been instantiated
with a constructor term. Moreover, when there is nondeterminism involved,
we should also increment cost variable N . In particular, we distinguish two
cases:
c guess1 : This rule corresponds to a case expression with a single branch.

For instance, a function with a constructor argument defined by a single
rule, like “f 0 = 0”, will be represented in the flat representation as
follows: f x = fcase x of {0→ 0}. Trivially, the application of this rule
is fully deterministic, even if variable x gets instantiated and, thus, cost
variable N is not modified.

c guess2 : This rule corresponds to a case expression with several branches.
In order to account for the nondeterministic step performed, we add 1
to Ncc where cc is the current cost center.

Case eval. The c eval rule can be applied when the argument of the case con-
struct is a function call, an SCC expression or another case construct. Then,
it tries to evaluate this expression. If an evaluation step is possible, we return
the original expression with the argument and the associated cost updated.

Function eval. The fun eval rule updates the current cost k by adding one to
Scc and by adding size(e) to Acc, where cc is the current cost center and e
is the right-hand side of the applied rule. Function size counts the number
of applications in an expression and it is useful to quantify memory usage.
Following [10], given an expression e, a call to size(e) returns the total
number of occurrences of n-ary symbols, with n > 0, in e, plus their arities;
of course, SCC symbols are not taken into account.

Arbitrary derivations are denoted by 〈CC0,K0, e〉 ⇒∗
σ 〈cc, k, e′〉, which is a

shorthand for the sequence of steps 〈CC0,K0, e〉 ⇒σ1 . . . ⇒σn
〈cc, k, e′〉 with

10



σ = σn◦· · ·◦σ1 (if n = 0 then σ = id). We say that a derivation 〈CC0,K0, e〉 ⇒∗
σ

〈cc, k, e′〉 is successful when e′ contains no function calls (i.e., it is a construc-
tor term). Then, we say that e evaluates to e′ with computed answer σ and
associated cost k. Regarding non-successful derivations (i.e., suspended or fail-
ing derivations), we simply return the suspended (or failing) expression together
with the cost associated to the performed steps. This information may be useful
when considering nondeterministic computations, as we will see in Section 5.

We note that, in order to be sound with current implementations of functional
logic languages, one should consider the effect of sharing. By using a sharing-
based implementation of the language, the system avoids repeated computations
when the same expression is demanded several times. The definition of a sharing-
based semantics for functional logic programs in flat form is subject of ongoing
work [2].

Let us illustrate our cost-augmented LNT calculus by means of an example.
In Fig. 3, we detail a successful derivation for the expression:

length app (1 : x) []

using the following definitions for length app and len in flat form:

length app x y = len (app x y)
len x = fcase x of { [] → 0 ;

(y:ys) → (len ys) + 1 }
Here, we use len and app as shorthands for length and append, respectively.
We annotate each transition in the derivation with the name of the applied rule.
Also, the values of the current cost center appear over the derived expression.
In some steps, we write [] to denote that there is no modification of the current
costs. We notice that the symbol “+” is considered as a built-in operator of the
language and, thus, we treat it similarly to constructor symbols. This explains
the fact that, in some steps, the symbol SCC is propagated to its arguments.

There is a precise equivalence between the cost semantics of Fig. 2 and the
attribution of costs as explained in Section 3. To be precise, the number of steps,
pattern matching operations and nondeterministic branching points coincide in
both cases. There exists, however, a significant difference regarding the number
of applications. Consider, for instance, function append. From the evaluation of
“append [] []” in the source language we compute 0 applications, since the
first rule of append contains no symbol of arity greater than zero. However, the
same evaluation in the flat language produces 6 applications, since the right-
hand side of the rule depicted in Example 2 comprises the right-hand sides of
the two source rules. For the development of a profiling tool, both alternatives
are possible.

5 Experimental Evaluation

The practicality of the ideas presented in this work is demonstrated by the
implementation of a symbolic profiler for the multi-paradigm language Curry
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length app (1 : x) []

⇒fun eval [S0 = 1 C0 = 0 A0 = 5 N0 = 0]
SCC 2 (len (SCC 1 (app (1 : x) [])))

⇒fun eval [S2 = 1 C2 = 0 A2 = 5 N2 = 0]
SCC 2 (case (SCC 1 (app (1 : x) []))

of {[]→ 0; (x′ : x′s)→ (len x′s) + 1})

⇒fun eval [S1 = 1 C1 = 0 A1 = 5 N1 = 0]
SCC 2 (case (SCC 1 (case (1 : x)

of{[]→ []; (z : zs)→ z : app zs []}))
of {[]→ 0; (x′ : x′s)→ (len x′s) + 1})

⇒case select [S1 = 1 C1 = 1 A1 = 5 N1 = 0]
SCC 2 (case (SCC 1 (1 : app x []))

of {[]→ 0; (x′ : x′s)→ (len x′s) + 1})

⇒scc2 []
SCC 2 (case ((SCC 1 1) : SCC 1 (app x []))

of {[]→ 0; (x′ : x′s)→ (len x′s) + 1})

⇒case select [S2 = 1 C2 = 1 A2 = 5 N2 = 0]
SCC 2 (len (SCC 1 (app x [])) + 1)

⇒scc2 []
(SCC 2 (len (SCC 1 (app x [])))) + 1

⇒fun eval [S2 = 2 C2 = 1 A2 = 10 N2 = 0]
(SCC 2 (case (SCC 1 (app x []))

of {[]→ 0; (x′′ : x′′s )→ (len x′′s ) + 1})) + 1

⇒fun eval [S1 = 2 C1 = 1 A1 = 10 N1 = 0]
(SCC 2 (case (SCC 1 (case x of{[]→ []; (z′ : z′s)→ z′ : app z′s []}))

of {[]→ 0; (x′′ : x′′s )→ (len x′′s ) + 1})) + 1

⇒case guess
{x 7→[]} [S1 = 2 C1 = 2 A1 = 10 N1 = 1]

(SCC 2 (case (SCC 1 []) of {[]→ 0; (x′′ : x′′s )→ (len x′′s ) + 1})) + 1

⇒scc3 []
(SCC 2 (case [] of {[]→ 0; (x′′ : x′′s )→ (len x′′s ) + 1})) + 1

⇒case select [S2 = 2 C2 = 2 A2 = 10 N2 = 0]
(SCC 2 0) + 1

⇒scc2 []
1

Fig. 3. Example of LNT derivation for “length app (1:x) []”
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[19].3 Firstly, in order to have a useful profiling tool, one has to extend the
basic scheme to cover all the high-level features of the language (concurrent
constraints, higher-order functions, calls to external functions, I/O, etc). This
extension has not been especially difficult starting out from the basic scheme
of Section 4. An interesting aspect of our profiling tool is that it is completely
written in Curry, which simplifies further extensions as well as its integration
into existing program transformation tools. Source programs are automatically
translated into the flat syntax by using the facilities provided by the module
Flat of PAKCS [17] for meta-programming in Curry.

Our prototype implementation is basically a meta-interpreter for the lan-
guage Curry enhanced with cost information as described throughout the paper.
Thus, given its interpretive nature, it cannot be directly used to profile “real”
applications. Nevertheless, in its present form, it may serve to check alternative
design choices for the formal specification of Fig. 2 that, otherwise, would be im-
possible to understand and explain clearly. Moreover, it has been of great help
to assess the effectiveness of a partial evaluator for Curry programs [3, 4]. Below
we show several experiments which illustrate the usefulness of our profiling tool.

Our first example shows a traditional use of the developed tool to assist
the programmer in the task of deciding whether the optimization of a program
function will actually improve program performance. The source program is as
follows:

append [] ys = ys
append (x:xs) ys = x : append xs ys
filter p [] = []
filter p (x:xs) = if p x then x : filter p xs else filter p xs
qsort [] = []
qsort (x:l) = append (qsort (filter (<x) l))

(x : qsort (filter (>=x) l))
rev [] = []
rev (x:xs) = append (rev xs) [x]
foo1 x = SCC cc1 (qsort (SCC cc2 (rev x)))
foo2 x = SCC cc3 (append (SCC cc4 (rev x)) [])

In this program, we have considered two possible uses of function rev in the
body of foo1 and foo2. Profiling has been applied to the initial calls:

foo1 [0,1,2,3]
foo2 [0,1,2,3]

The profiling results for these calls are shown in the first four rows of Table 1
(naive). For each benchmark, the columns show the cost center, the symbolic
costs for this cost center (steps, pattern matchings and applications,4 respec-
tively), and the actual runtime (by using larger input lists to obtain significant
runtimes). Note that this does not mean that our symbolic costs are not directly

3 Available at: http://www.dsic.upv.es/users/elp/profiler.
4 Nondeterministic branching points are ignored in this example since computations

are fully deterministic.
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benchmark cost center steps pat mat apps runtime

naive foo1 cc1 130 119 1466 1660 ms.
cc2 25 25 245

foo2 cc3 5 5 45 340 ms.
cc4 15 15 155

optimized foo1 cc1 130 119 1466 1640 ms.
cc2 6 5 49

foo2 cc3 5 5 45 20 ms.
cc4 6 5 49

Table 1. Profiling results

related to runtimes, but simply that, given the interpretive nature of the pro-
filer, it cannot handle the large inputs needed to obtain a measurable runtime.
Times are expressed in milliseconds and are the average of 10 executions on a
800 MHz Linux-PC (Pentium III with 256 KB cache). All programs (including
the profiler) were executed with the Curry→Prolog compiler [9] of PAKCS.

Clearly, the information depicted in Table 1 is helpful to assist the user
in finding out which program function may benefit from being optimized. For
instance, if one intends to use rev as an argument of qsort (like in foo1), there
is no urgent need to optimize rev, since it takes only a small percentage of the
total costs. On the other hand, if the intended use is as an argument of append,
then the optimization of rev may be relevant. In order to demonstrate this, we
have replaced rev with a version of reverse with an accumulating parameter
(which can be obtained by program transformation). The new profiling results
are shown in the last four rows of Table 1 (optimized). By observing foo1, we
notice that there is no significant runtime improvement (compare the first and
fifth rows). However, the runtime of foo2 is highly improved (compare the third
and seventh rows).

Our second example illustrates the interest in computing failing derivations
when nondeterministic computations arise. The source program is a simplified
version of the classical map coloring program which assigns a color to each of
three countries such that countries with a common border have different colors:

isColor Red = success
isColor Yellow = success
isColor Green = success
coloring x y z = isColor x & isColor y & isColor z
correct x y z = diff x y & diff x z & diff y z
gen test x y z = SCC cc1 (coloring x y z & correct x y z)
test gen x y z = SCC cc2 (correct x y z & coloring x y z)

Here, “&” is the concurrent conjunction, “success” is a predefined constraint
which is always solvable, and the predefined function “diff” is the only rigid
function (it makes use of the strict equality predicate in order to check whether
its arguments are different, but no instantiation is allowed). We have included
two functions gen test and test gen which implement the “generate & test”
and the (much more efficient) “test & generate” solutions, respectively. Rather
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surprisingly, the profiling results for any of the six possible solutions coincide for
both functions: 8 steps, 3 matching operations, 3 nondeterministic steps, and 69
applications. These counterintuitive results are explained as follows. The actual
improvement is not related to the successful derivations, which are almost identi-
cal in both cases, but to the number (and associated costs) of failing derivations.
Thus, our current implementation considers two possibilities:

1. the computation of the costs for each derivation is independent of previous
branches in the search tree (i.e., the calculus of Fig. 2);

2. the computation of the costs for each derivation also includes the costs of all
previous branches in the search tree.

By using the second alternative, we can sum up the costs of the whole search
space for each of the previous functions (including failing derivations):

gen test: 192 steps, 81 pattern matchings, 81 nondeterministic branching points,
and 1695 applications (for 27 derivations);

test gen: 165 steps, 60 pattern matchings, 60 nondeterministic branching points,
and 1428 applications (for 21 derivations).

From these figures, the greater efficiency of test gen can be easily explained.
Finally, we have applied our profiling tool to check the improvements achieved

by a partial evaluator of Curry programs [3, 4] over several well-known bench-
marks. In particular, we have performed the profiling of those expressions pre-
viously annotated to be partially evaluated (i.e., cost centers are introduced on
the same expressions to be specialized). Table 2 shows our profiling results for
several well-known benchmarks of partial evaluation. Some of them are typical
from deforestation (the case of all ones, app last, double app, double flip,
length app) and kmp is the well-known “KMP test”.5 For each benchmark, we
show the number of steps, pattern matching operations and applications for
the original and residual programs, respectively; we do not include information
about the amount of nondeterminism since it is not changed by the partial
evaluator. The last column of Table 2 shows the actual speedup (i.e., the ratio
original/residual, where original refers to the runtime in the original program
and residual is the runtime in the partially evaluated program). Runtime input
goals were chosen to give a reasonably long overall time.

From the figures in Table 2, we observe that the cost information collected
by the profiler allows us to quantify the potential improvement which has been
achieved by the residual program. For instance, the more significant improve-
ments on the symbolic costs are produced for the KMP benchmark which, in-
deed, shows an actual speedup of 12.94 for sufficiently large input goals. Fewer
improvements have been obtained for the remaining benchmarks, which is also
sensible with the minor speedups tested experimentally. To be more precise, one
should determine the appropriate weight of each symbolic cost for a specific lan-
guage environment. Nevertheless, our experiments show the potential usefulness
of our profiler to check whether a sufficient reduction (w.r.t. the symbolic costs)
5 The complete code of these benchmarks can be found, e.g., in [7].
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Benchmark Original Residual Speedup
steps pat mat apps steps pat mat apps

all ones 22 22 198 11 11 110 1.29
app last 22 33 209 11 11 77 2.83
double app 27 27 243 16 17 254 1.17
double flip 18 18 234 9 9 117 1.25
kmp 101 160 1279 11 60 402 12.94
length app 23 23 195 12 13 184 1.39

Table 2. Improvements by partial evaluation

has been achieved by partial evaluation and, thus, the residual program can be
safely returned. A further step is the “smart” use of the profiling information to
guide the partial evaluation process, which is subject of ongoing work.

6 Related Work

One of the most-often cited profilers in the literature is gprof—a call graph execu-
tion profiler developed by Graham et al. [15]. Apart from collecting information
about call counts and execution time as most traditional profilers, gprof is able
to account to each routine the time spent by the routines that it invokes. This
accounting is achieved by assembling a call graph made up by nodes that are
routines of the program and directed arcs that represent calls from call sites to
routines. By post-processing these data, times are propagated along the edges
of the graph to attribute time for routines to the routines they call. Although
these ideas have been of great influence, their approach has not been directly
transferred to profiling declarative programs (which heavily depend on recur-
sion) mainly because programs that exhibit a large degree of recursion are not
easily analyzed by gprof.

To the best of our knowledge, there is no previous work about profiling within
the field of (narrowing-based) functional logic programming. The remaining of
this section is devoted to briefly review some related research on profiling for the
logic and functional programming paradigms separately.

As for logic programming, the profiler for Prolog developed by Debray [14]
shows that traditional profiling techniques are inadequate for logic programming
languages. In particular, this profiler is especially designed to gather information
related to the control flow in logic programming languages, including backtrack-
ing and is able to deal with primitives like assert and retract. Our profiler
shares with this approach some ideas for collecting information about nondeter-
ministic branching points. A more recent reference is the work by Jahier and
Ducassé [20, 21], which proposes a program execution monitor to gather data
about Mercury executions. For this purpose, they define a high-level primitive
built on top of the execution tracer for Mercury, which delivers information ex-
tracted from the current state at a particular point (e.g., execution depth, port,
live arguments, etc). Our approach is more related with the design of the tracer,
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in the sense that our profiler relies on an operational semantics which may also
show the state transitions performed along the process, apart from collecting
cost information. Regarding parallel logic programs, Tick [28] developed a per-
formance analysis for estimating the parallelism exploited using “kaleidescope
visualization”. This technique consists in summarizing the execution of a pro-
gram in a single image or signature. According to [28], there are two inputs to
the algorithm: a trace file and a source program. The trace file input contains
information about events logged in the trace. This information could be tar-
geted by profiling techniques in the style of the one described in this paper. The
implementation of profiling tools has been carried out for some logic program-
ming languages. For instance, the ECLiPSe logic programming system contains
a timing profiler which interrupts the program execution every 0.01s to measure
the time spent in every predicate of a program. For the Mercury language, there
exist two profiling tools: the mprof Mercury profiler—which is a conventional
call-graph profiler in the style of the above gprof profiler—and the Mercury
deep profiler mdprof [13]—which is a new profiler that associates with every
profiling measurement a very detailed context about the ancestor functions or
predicates and their call sites. This approach shares some ideas with cost center
“stack” profiling [26], which we discuss below.

Modern functional profilers have been heavily influenced by the notion of cost
center, which basically permits to attribute costs to program expressions rather
than profiling every program function [26, 27]. Nevertheless, similar ideas (i.e.,
the concept of “current function”) already appeared in the profiler for the SML
of New Jersey [11]. Recent profilers for the non-strict lazy functional language
Haskell have been developed relying on the notion of cost center. Along these
lines, the profiling technique developed by Sansom and Peyton-Jones [27] is the
closest to our work. A similarity with them is that we also present a formal
specification of the attribution of execution costs to cost centers by means of an
appropriate cost-augmented semantics. A significant difference, though, is that
our flat representation for programs is first-order, contains logical features (like
nondeterminism), and has an operational semantics which combines narrowing
and residuation. A further extension of the cost center profiling is cost center
“stack” profiling [26], which allows full inheritance of the cost of functions. The
basic idea is to attribute the cost of executing a profiled function to the function
and to the stack of functions responsible for the call. Our approach could also
be extended towards this direction in order to develop a more flexible profiling
tool.

It is worth mentioning the monitor semantics presented in [23]. This is a
non-standard model of program execution that captures “monitoring activity”
as found in debuggers, profilers, tracers, etc. Their framework is general enough
in the sense that the monitoring semantics can be automatically obtained from
any denotational semantics. It could be interesting to investigate whether this
framework can also be applied in our context.

In the field of functional logic programming, there is a recent line of research
which investigates techniques to estimate the effectiveness achieved by partial
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evaluation. The work in [1] formally defines several abstract cost criteria to mea-
sure the effects of program transformations (the similarities with our symbolic
costs are discussed throughout the paper). Their goal is more restrictive than
the one behind profiling techniques. In particular, the purpose of [1] is to es-
timate the effectiveness achieved by a concrete residual program by means of
some cost recurrence equations obtained along the partial evaluation process. A
further step in the line of generating residual programs with cost information
has been taken in [29]. This work introduces the scheme of a narrowing-driven
partial evaluator enhanced with the computation of symbolic costs. Thus, for
each residual rule, the new scheme provides the cost variation due to the partial
evaluation process.

Finally, Watterson and Debray [30] propose an approach to reduce the cost of
“value” profiling (i.e., a profiling technique which provides information about the
runtime distribution of the values taken by a variable). Their approach avoids
wasting resources where the profile can be guaranteed to not be useful for opti-
mizations. We believe that such performance optimizations could also be tried
in our framework.

7 Conclusions and Further Work

This paper investigates the definition of a source-level, symbolic profiling scheme
for a multi-paradigm functional logic language. Our scheme is based on sev-
eral symbolic costs (comprehensive with those of [1, 10] to measure the cost of
functional logic computations) and uses the idea of cost centers to attribute
costs to program expressions. The formalization of our scheme is carried out
by a cost-augmented semantics, carefully designed for the flat representation of
multi-paradigm declarative programs. An implementation of the profiling tool
(extended to cover all the features of the language Curry) is presented. Pre-
liminary results are encouraging and give evidence of the practicality of our
approach and the benefits of using profiling information in the field of program
transformation.

Future work includes two different lines of research. Currently, our main
concern is to investigate the combination of the symbolic profiler with exist-
ing partial evaluation techniques for functional logic languages [6, 7] in order
to “guide” the specialization process. We are also working on the definition of
a new semantics characterization able to cope with all the features of modern
multi-paradigm language implementations: sharing of common variables, nonde-
terminism, search strategies, concurrency, etc. A preliminary definition of such a
semantics can be found in [2]. A cost extension of this enhanced semantics may
be useful to collect cost information in the context of these realistic languages.
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