
Conversion to Tail Recursion in Term RewritingI

Naoki Nishidaa, Germán Vidalb

aGraduate School of Information Science, Nagoya University
Furo-cho, Chikusa-ku, 4648603 Nagoya, Japan

bMiST, DSIC, Universitat Politècnica de València
Camino de Vera, s/n, 46022 Valencia, Spain

Abstract

Tail recursive functions are a special kind of recursive functions where the
last action in their body is the recursive call. Tail recursion is important for
a number of reasons (e.g., they are usually more efficient). In this article, we
introduce an automatic transformation of first-order functions into tail recur-
sive form. Functions are defined using a (first-order) term rewrite system. We
prove the correctness of the transformation for constructor-based reduction
over constructor systems (i.e., typical first-order functional programs).

Keywords: term rewriting, program transformation, tail recursion

1. Introduction

Tail recursive functions are recursive functions that call themselves (or
other mutually recursive functions) as a final action in their recursive defini-
tions. Tail recursion is specially important because it often makes functions
more efficient. From a compiler perspective, tail recursive functions are con-
sidered as iterative constructs since the allocated memory in the stack does

IThis work has been partially supported by the Spanish Ministerio de Ciencia e Inno-
vación (Secretaŕıa de Estado de Investigación) under grant TIN2008-06622-C03-02, by the
Generalitat Valenciana under grant PROMETEO/2011/052, and by MEXT KAKENHI
#21700011.
This paper is published in “Naoki Nishida, Germán Vidal: Conversion to tail recursion in
term rewriting. Journal of Logic and Algebraic Programming 83(1): 53-63 (2014).” DOI:
http://dx.doi.org/10.1016/j.jlap.2013.07.001. c© Elsevier

Email addresses: nishida@is.nagoya-u.ac.jp (Naoki Nishida),
gvidal@dsic.upv.es (Germán Vidal)

Preprint submitted to Elsevier February 6, 2015

not grow with the recursive calls (moreover, some functions may become
much more efficient in tail recursive form thanks to the use of accumulators).
Furthermore, a transformation to tail recursive form may also be useful to
define program analyses and transformations that deal with programs in a
given canonical form (e.g., where all functions are assumed to be tail recur-
sive). This is the case, for instance, of the function inversion technique of [1]
that is defined for tail recursive functions.

Let us illustrate the proposed transformation with an example. Consider
the following function to concatenate two lists:

app(nil, y) → y
app(x : xs, y) → x : app(xs, y)

where nil denotes an empty list and x : xs a list with head x and tail xs. The
function app can be transformed into tail recursive form, e.g., as follows:

app(x, y) → app′(x, y, id)
app′(nil, y, k) → eval(k, y)

app′(x : xs, y, k) → app′(xs, y, cont(k, x))
eval(id, y) → y

eval(cont(k, x), y) → eval(k, x : y)

Intuitively speaking, the essence of the transformation consists in introducing
two new constructor symbols, a 0-ary constructor id (to stop the construc-
tion of contexts) and a binary constructor cont (to reconstruct contexts).
Therefore, a derivation like

app(1 : nil, 2 : 3 : nil)→ 1 : app(nil, 2 : 3 : nil)→ 1 : 2 : 3 : nil

becomes

app(1 : nil, 2 : 3 : nil)→ app′(1 : nil, 2 : 3 : nil, id)
→ app′(nil, 2 : 3 : nil, cont(id, 1))→ eval(cont(id, 1), 2 : 3 : nil)
→ eval(id, 1 : 2 : 3 : nil)→ 1 : 2 : 3 : nil

in the transformed program. Observe that, in contrast to the approach of
[2], our tail recursive functions are not more efficient than the original ones
(actually, they perform some more steps—by a constant factor—due to the
introduction of the auxiliary function eval).1 This is similar to the introduc-
tion of continuations [3, 4] in higher-order λ-calculus, i.e., lambda expressions

1Nevertheless, it may run faster in general thanks to the use of tail recursion.

2

that encode the future course of a computation. For instance, the example
above would be transformed using continuations as follows:

app x y → appc x y (λw. w)
appc nil y k → k y

appc (x : xs) y k → appc xs y (λw. k (x : w))

As in our approach, some more steps are required in order to reduce the
continuations:

app (1 : nil) (2 : 3 : nil)→ appc (1 : nil) (2 : 3 : nil) (λw. w)
→ appc nil (2 : 3 : nil) (λw′. (λw. w) (1 : w′))
→ (λw′. (λw. w) (1 : w′)) (2 : 3 : nil)
→ (λw. w) (1 : 2 : 3 : nil)→ 1 : 2 : 3 : nil

In this article, we introduce an automatic transformation of first-order func-
tions to tail recursive form. In our setting, functions are defined using a con-
structor term rewrite system, i.e., a typical (first-order) functional program.
Moreover, in order to preserve the semantics through the transformation, we
only consider a particular form of innermost reductions (i.e., call by value)
that is known as constructor-based reduction.

As mentioned before, in the context of λ-calculus, a similar goal can be
achieved by introducing continuations [3, 4]. However, this implies moving
to a higher-order setting and we aim at defining a first-order transformation.
Hence we share the aim with Wand’s seminal paper [5], though he focused on
improving the complexity of functions by introducing accumulators (a data
structure representing a continuation function, in Wand’s words). However,
the examples presented by Wand required some eureka steps and, therefore,
no automatic technique is introduced. A similar approach is also presented
by Field and Harrison [2], where the function accumulators are derived (man-
ually) from functions with continuations. Although the introduction of ac-
cumulators is out of the scope of this paper, an example illustrating such a
transformation in our context can be found in Section 4.

The paper is organized as follows. In Section 2 we briefly review some
notions and notations from term rewriting. Section 3 presents our transfor-
mation for converting functions to tail recursive form and proves its correct-
ness. Finally, Section 4 concludes and points out a challenging direction for
future research.

3

2. Preliminaries

In this section, we recall some basic notions and notations of term rewrit-
ing [6, 7].

Throughout this paper, we use V as a countably infinite set of variables.
Let F be a signature, i.e., a finite set of function symbols with a fixed arity
denoted by ar(f) for a function symbol f . We often write f/n to denote a
function symbol f with arity ar(f) = n. The set of terms over F and V is
denoted by T (F ,V), and the set of variables appearing in terms t1, . . . , tn is
denoted by Var(t1, . . . , tn). The notation C[t1, . . . , tn]p1,...,pn represents the
term obtained by replacing each hole 2 at position pi of an n-hole context C[]
with term ti for all 1 ≤ i ≤ n. We may omit the subscripts p1, . . . , pn when
they are clear from the context. The domain and range of a substitution σ
are denoted by Dom(σ) and Ran(σ), respectively; a substitution σ will be
denoted by {x1 7→ t1, . . . , xn 7→ tn} if Dom(σ) = {x1, . . . , xn} and σ(xi) =
ti for all 1 ≤ i ≤ n. The application σ(t) of substitution σ to term t is
abbreviated to tσ.

A set of rewrite rules l → r such that l is a nonvariable term and r is
a term whose variables appear in l is called a term rewriting system (TRS
for short); terms l and r are called the left-hand side and the right-hand
side of the rule, respectively. We restrict ourselves to finite signatures and
TRSs. Given a TRS R over a signature F , the defined symbols DR are
the root symbols of the left-hand sides of the rules and the constructors are
CR = F \ DR. Constructor terms of R are terms over CR and V . Ground
(i.e., without variables) terms and ground constructor terms are denoted by
T (F) and T (CR), respectively. We sometimes omit R from DR and CR if
it is clear from the context. A substitution σ is a constructor substitution if
xσ ∈ T (CR,V) for all variables x. R is a constructor system if the left-hand
sides of its rules have the form f(s1, . . . , sn) where si are constructor terms,
i.e., si ∈ T (CR,V), for all i = 1, . . . , n.

For a TRS R, we define the associated rewrite relation →R as follows:
given terms s, t ∈ T (F ,V), we have s→R t iff there exists a position p in s, a
rewrite rule l→ r ∈ R and a substitution σ with s|p = lσ and t = s[rσ]p; the
rewrite step is often denoted by s→p,l→r t to make explicit the position and
rule used in this step. Moreover, if no proper subterms of s|p are reducible,

then we speak of an innermost reduction step, denoted by s
i→R t. The

instantiated left-hand side lσ is called a redex. A term t is called irreducible
or in normal form w.r.t. a TRS R if there is no term s with t →R s. We

4

denote the set of normal forms by NFR.
A derivation is a (possibly empty) sequence of rewrite steps. Given a

binary relation→, we denote by→∗ its reflexive and transitive closure. Thus
t→∗R s means that t can be reduced to s in R in zero or more steps; we also
use t→n

R s to denote that t can be reduced to s in exactly n rewrite steps.

3. Conversion to Tail Recursive Form

In this section, we introduce an automatic conversion to tail recursive
form and prove its correctness.

3.1. The Transformation

As illustrated in the previous section, the basic idea consists in introduc-
ing two fresh constructor functions, id and cont, to represent contexts. In the
following definition, for the sake of simplicity, we consider that the function
to be inverted is self-recursive.

Definition 1 (tail recursive transformation). Let R be a TRS and let
f/n be a function symbol defined by the rules Rf ⊆ R. The TRS Tail(R, f)
obtained from R by transforming the rules of function f to tail recursive
form is given by

Tail(R, f) = (R \Rf)
∪ {f(xn)→ ftail(xn, id), eval(id, x)→ x}
∪
⋃

l→r∈Rf
tailf (l→ r)

where the auxiliary function tailf is defined as follows:

• If l = f(tn) and r does not contain calls to function f , then

tailf (l→ r) = {ftail(tn, k)→ eval(k, r)}

• If r contains at least one call to function f—if there are several calls, we
select any call, e.g., the leftmost innermost one—we proceed as follows.
Let l = f(tn) and r = C[f(sn)]. Then, we have

tailf (l→ r) =

{
ftail(tn, k) → ftail(sn, cont(k, ym))

eval(cont(k, ym), w) → eval(k, C[w])

}
where cont is a fresh constructor symbol and ym are the variables of
C[]. Note that, when C[] is 2, we have

tailf (l→ r) = {ftail(tn, k)→ ftail(sn, k)}

5

Example 2. Let us consider the Fibonacci program Rfib :

fib(0) → 0
fib(s(0)) → s(0)

fib(s(s(n))) → add(fib(s(n)), fib(n))
add(0, y) → y

add(s(x), y) → s(add(x, y))

where natural numbers are built from 0 and s (successor) functions. Trans-
forming function fib to tail recursion, we get R′fib = Tail(Rfib , fib):

fib(n) → fibtail(n, id)
fibtail(0, k) → eval(k, 0)

fibtail(s(0), k) → eval(s(0, k))
fibtail(s(s(n)), k) → fibtail(s(n), cont(k, n))

eval(id, x) → x
eval(cont(k, x), w) → add(w, fib(x))

together with the original definition of the function add. Moreover, we could
also transform function add to tail recursive form, thus obtaining R′′fib =
Tail(R′fib , add):

add(x, y) → addtail(x, y, idadd)
addtail(0, y, k) → evaladd(k, y)

addtail(s(x), y, k) → addtail(x, y, contadd(k))
evaladd(idadd, x) → x

evaladd(contadd(k), w) → s(evaladd(k, w))

together with the previous definitions for fib, fibtail and eval.

Although Definition 1 only considers self-recursive functions, its extension
to deal with mutually recursive functions is not difficult. In particular, one
can consider a transformational approach that proceeds as follows. Let F be
a set of mutually recursive functions. Then, we introduce a fresh function
symbol g, a fresh dummy constant ⊥, and fresh constants cf for all f ∈ F .
Now, we can transform the mutual recursion into a direct self-recursion, e.g.,
as follows: every term f(t) is replaced by g(cf , t,⊥, . . . ,⊥), where the arity
of the fresh function g is the maximum arity of the functions in F , cf is
a constructor constant that identifies function f , and ⊥ is used to fill the

6

arguments which are not needed (when the arity of f is smaller than the
arity of g). Finally, one can apply Tail to the self-recursive case, and again
replace “g(cf ,” by “ftail(” and also drop ⊥ from the rules. Let us illustrate
this idea with an example.

Example 3. Consider the following contrieved TRS to double a given nat-
ural number:

R =

double(n) → f(n, 0)

f(0, y) → y
f(s(x), y) → s(s(g(x, y, 0)))
g(0, y, z) → y

g(s(x), y, z) → s(f(x, s(y)))

A direct extension of Tail to deal with mutual recursion would transform R
into the following TRS:

Tail(R, {f, g}) =

double(n) → f(n, 0)
f(n, y) → ftail(n, y, id)

ftail(0, y, k) → eval(k, y)
ftail(s(x), y, k) → gtail(x, y, 0, contf(k))

g(n, y, z) → gtail(n, y, z, id)
gtail(0, y, z, k) → eval(k, y)

gtail(s(x), y, z, k) → ftail(x, s(y), contg(k))
eval(id, y) → y

eval(contf(k), y) → eval(k, s(s(y)))
eval(contg(k), y) → eval(k, s(y))

Now, let us show how the transformational approach sketched above works.
First, we introduce a fresh function h and constructor constants cf and cg.
Then, the mutual recursion is transformed to a self-recursion as follows:

R′ =

double(n) → h(funf , n, 0,⊥)

h(cf , 0, y,⊥) → y
h(cf , s(x), y,⊥) → s(s(h(cg, x, y, 0)))

h(cg, 0, y, z) → y
h(cg, s(x), y, z) → s(h(cf , x, s(y),⊥))

7

By applying function Tail to R′, we get the following TRS:

Tail(R′, h) =

double(n) → h(funf , n, 0,⊥)
h(x, y, z, w) → htail(x, y, z, w, id)

htail(cf , 0, y,⊥, k) → eval(k, y)
htail(cf , s(x), y,⊥, k) → htail(cg, x, y, 0, contf(k))

htail(cg, 0, y, z, k) → eval(k, y)
htail(cg, s(x), y, z, k) → htail(cf , x, s(y),⊥, contg(k))

eval(id, y) → y
eval(contf(k), y) → eval(k, s(s(y)))
eval(contg(k), y) → eval(k, s(y))

Finally, by replacing “h(cf ,” and “h(cg,” with “f(” and “g(”, resp., and by
removing all occurrences of ⊥ from the rules, the system Tail(R′, h) is trans-
formed into (a simplified variant of) Tail(R, {f, g}).

3.2. Correctness

Let us now discuss the correctness of Tail. Unfortunately, the function
Tail does not in general preserve innermost reduction sequences, even if we
restrict to those that end with a constructor term (a value).

Example 4. Consider the following TRS:

R =

f(x) → g(h(x))

g(s(x)) → 0
h(0) → 0

h(s(s(x))) → s(h(x))

Note that R is not sufficiently complete.2 Consider, e.g., the normal form

2An n-ary function symbol f ∈ DR is called sufficiently complete w.r.t. R if for all
ground constructor terms t1, . . . , tn ∈ T (CR), there exists a ground constructor term
t ∈ T (CR) such that f(t1, . . . , tn)→+

R t. R is called sufficiently complete if every defined
symbol f ∈ DR is sufficiently complete w.r.t. R. Note that for a terminating TRS R, R
is sufficiently complete iff NFR ∩ T (F) = T (CR).

8

h(s(0)). Here, R is transformed by Tail as follows:

Tail(R, h) =

f(x) → g(h(x))
g(s(x)) → 0

h(x) → htail(x, id)
htail(0, k) → eval(k, 0)

htail(s(s(x)), k) → htail(x, cont(k))
eval(id, x) → x

eval(cont(k), x) → eval(k, s(x))

Now, we have the derivation

f(s(s(s(0))))
i→R g(h(s(s(s(0)))))

i→R g(s(h(s(0))))
i→R 0

but this derivation is not possible in R′:

f(s(s(s(0))))
i→Tail(R,h) g(h(s(s(s(0)))))

i→Tail(R,h) g(htail(s(s(s(0))), id))
i→Tail(R,h) g(htail(s(0), cont(id))) 6 i→Tail(R,h)

Intuitively speaking, the problem with tail recursion functions is that they
do not preserve the semantics when only partial values—terms rooted by
some constructor symbols, like s(h(s(0))) above—were required in the origi-
nal program, since tail recursive functions either terminate producing a total
value—a constructor term—or an expression rooted by a defined function
symbol, like htail(s(0), cont(id)) above. A similar situation occurs with con-
tinuations and lazy functional languages like Haskell, where the introduction
of continuations may force the eager evaluation of some expression, thus
changing the original semantics.3

Therefore, in the following, we further restrict the intended semantics to
only consider so called constructor-based reductions [8], a particular case of
innermost reduction where only constructor matchers are allowed. Formally,

an innermost reduction step s
i→R t is said constructor-based if all the proper

subterms of the selected redex s|p are constructor terms, which is denoted by

s −→c R t. There are classes of rewrite systems for which
i→R = −→c R, e.g., for

3Consider, e.g., the functions app and appc shown in Section 1. Given a non-terminating
function ⊥ (defined by ⊥ → ⊥) and the well-known function head that returns the head of
a list, we have that app (1 : ⊥) ⊥ reduces to 1 in Haskell, while appc (1 : ⊥) ⊥ is undefined.

9

sufficiently complete systems or non-erasing systems; nevertheless, we prefer
to require constructor-based reductions in our results in order to keep them
more general.

Now, we prove the correctness of the Tail transformation. Here, we make
some assumptions to simplify the proof of correctness. In particular, we
assume that the considered function, f , is unary and is defined by means of
a single non-recursive rule and a single recursive rule as follows:

f(a) → r (R1)
f(b) → C[f(s)] (R2)

where r, s are constructor terms and C[] is a constructor context, i.e., we
assume that f is not only self-recursive but also linear (which means that
there is just one recursive call in the right-hand side of the recursive rule).

Therefore, we assume that R′ = Tail(R, f), the output of the tail recur-
sive conversion for function f , contains the rules

f(x) → ftail(x, id)
ftail(a, k) → eval(k, r) (R′1)
ftail(b, k) → ftail(s, cont(k, ym)) (R′2)

eval(id, w) → w
eval(cont(k, ym), w) → eval(k, C[w])

Extending our results for arbitrary systems is not difficult but makes the
proofs much less intuitive and technically more involved (see below).

Our first lemma shows some basic equivalence between the reductions in
the original system and in the tail recursive one.

Lemma 5. Let R be a constructor TRS and let R′ = Tail(R, f). Then,

f(t0) −→c
n
R Cσ1[. . . Cσn[f(tn)] . . .]

iff
ftail(t0, w) −→c

n
R′ ftail(tn, cont(. . . cont(w, ymσ1), . . . ymσn))

where ym are the variables of C[] and σ1, . . . , σn are constructor substitutions.

Proof. We prove the claim by induction on the number n ≥ 0 of reduction
steps. The base case n = 0 follows trivially since C[] is the empty context.

10

So we proceed with the inductive case n > 0. Here, we assume that the
former derivation has the following form:

f(t0) −→c R2
C[f(s)]σ1 = Cσ1[f(t1)] −→c

n−1
R Cσ1[. . . Cσn[f(tn)] . . .]

where bσi = ti−1 and sσi = ti, for all i = 1, . . . , n. Thus f(t0) −→c R2
Cσ1[f(t1)]

iff ftail(t0, w) −→c R′2
ftail(s, cont(w, ym))σ1 = ftail(t1, cont(w, ymσ1)).

4 Hence

the claim follows by applying the induction hypothesis. 2

Our next auxiliary lemma states a useful property of tail recursive systems.

Lemma 6. Let R be a constructor TRS and let R′ = Tail(R, f). Then,

eval(cont(. . . cont(w, ymσ1), . . . ymσn), t) −→c
∗
R′ eval(w,Cσ1[. . . Cσn[t] . . .])

where ym are the variables of C[], ym 6∈ Var(t), and σ1, . . . , σn are constructor
substitutions.

Proof. Trivial by definition of eval in R′. 2

Now, we can proceed with the proof of our main result:

Theorem 7. Let R be a constructor TRS and let R′ = Tail(R, f) be the
output of the tail recursive conversion for some function f . Then,

• R′ is a constructor TRS and

• f(t0) −→c ∗R t iff f(t0) −→c ∗R′ t for constructor terms t0, t.

Proof. The fact that R′ is a constructor TRS is a trivial consequence from
the fact that R is a constructor TRS and the way in which the left-hand
sides are modified: only single variable arguments are added to f and both
id and cont are constructor symbols.

(⇒) Let us consider that f(t0) −→c ∗R t has the form

f(t0) −→c
n
R Cσ1[. . . Cσn[f(tn)] . . .] −→c R Cσ1[. . . Cσn[rσn+1] . . .] = t

4Here, we use the fact that k 6∈ Var(b) ∪ Var(s) by construction.

11

where bσi = ti−1 and sσi = ti for all i = 1, . . . , n, and aσn+1 = tn. Note
that rσn+1 is a constructor term by construction (since we assumed r to be
a constructor term and all σi are constructor substitutions).

Therefore, in R′, we have f(t0) −→c R′ ftail(t0, id). By Lemma 5, we have
ftail(t0, id) −→c n

R′ ftail(tn, cont(. . . cont(id, ymσ1), . . . ymσn)). Moreover, since
aσn+1 = tn, we have

ftail(tn, cont(. . . cont(id, ymσ1), . . . ymσn))
−→c R′ eval(cont(. . . cont(id, ymσ1), . . . ymσn), rσn+1)

Now, by Lemma 6, we have

eval(cont(. . . cont(id, ymσ1), . . . ymσn), rσn+1)
−→c ∗R′ eval(id, Cσ1[. . . Cσn[rσn+1] . . .])

And, finally, by applying the base case of eval we get

eval(id, Cσ1[. . . Cσn[rσn+1] . . .]) −→c R′ Cσ1[. . . Cσn[rσn+1] . . .] = t

(⇐) The proof is analogous by applying Lemma 5 and 6 in the opposite
direction. 2

Now, we discuss how the assumptions made in the proof scheme above can
be relaxed:

1. On the first hand, we can consider arbitrary, mutually recursive func-
tions by transforming them into a self-recursive function as discussed
above, so this is not relevant for proving correctness.

2. Considering functions with an arbitrary number of arguments is not
relevant too, since we can just group all arguments by introducing a
fresh constructor symbol (i.e., a tuple symbol).

3. Extending the proofs for dealing with several non-recursive and several
recursive rules is tedious but easy. To be more precise, one should
extend the previous results to consider different contexts C1, . . . , Cj (for
the right-hand sides of the recursive rules), together with the associated
continuation constructors, cont1, . . . , contj, j > 0.

4. Assuming that the right-hand side of the non-recursive rules is an ar-
bitrary term (rather than a constructor term) only affects to the proof
of Theorem 7. The extension would be straightforward by introducing
some intermediate derivations which are the same in both the original
and transformed systems.

12

5. Finally, the main difficulty comes from the extension to deal with ar-
bitrary, non-linear recursive rules, i.e., from considering that the right-
hand sides of the recursive rules may contain calls to other functions.
This extension has a strong influence on the evaluation order and makes
the correspondence between the derivations in the original and trans-
formed systems more difficult to establish.

Now, we extend the correctness result in order to overcome the limitations
mentioned in points (4) and (5) above, the most important ones. In the
following, given a rewrite sequence t0−→c p0,R t1−→c p1,R · · · −→c pn−1,R tn, we write

t1−→c n
p≤,R tn (resp. t1−→c n

p<,R tn) if p ≤ pi (resp. p < pi) for all i = 0, . . . , n.
Moreover, by the definition of constructor reduction −→c , we have the following
properties:

• no redex w.r.t. −→c contain a redex as its proper subterm, and

• the positions of all redexes appearing in a term are disjoint, i.e., for all
redex positions p, p′, we have neither p < p′ nor p′ < p.

Due to these properties, rewrite steps over disjoint positions can be exchanged
while preserving the computed normal form and, thus, the following stan-
dardization lemma trivially holds:

Lemma 8. Let R be a constructor TRS, C[]p a context, f/n a defined sym-
bol, sn a sequence of n terms, and u a constructor term. If C[f(sn)]p−→c ∗p,R u
with k steps, then there exist a sequence tn of n constructor terms and a con-
structor term u′ such that C[f(sn)]p−→c ∗p<,RC[f(tn)]p−→c ∗p≤,RC[u′]p−→c ∗R u with
k steps.

Now, we generalize Lemma 6 in order to overcome the limitation mentioned
in point (5) above:

Lemma 9. Let R be a constructor TRS and R′ = Tail(R, f). Let C[] be
a context, u0, . . . , un constructor terms, and σ1, . . . , σn constructor substitu-

13

tions. If Cσi[ui]−→c ∗R′ ui−1 for all 1 ≤ i ≤ n, then

eval(cont(. . . cont(w, ymσ1), . . . ymσn), un)
−→c R′ eval(cont(. . . cont(w, ymσ1), . . . ymσn−1), Cσn[un])
−→c ∗ε<,R′ eval(cont(. . . cont(w, ymσ1), . . . ymσn−1), un−1)

−→c R′ eval(cont(. . . cont(w, ymσ1), . . . ymσn−2), Cσn−1[un−1])
−→c ∗ε<,R′ · · ·
−→c ∗ε<,R′ eval(cont(w, ymσ1), u1)

−→c R′ eval(w,Cσ1[u1])
−→c ∗ε<,R′ eval(w, u0)

for all continuation term w, where ym are the variables of C[], ym 6∈ Var(t).

Proof. Trivial by definition of eval in R′. 2

Then, we can state an extension of Theorem 7 that overcomes the limitations
mentioned in points (4) and (5) above as follows:

Theorem 10. Let R be a constructor TRS and let R′ = Tail(R, f) be the
output of the tail recursive conversion for some function f . Then,

• R′ is a constructor TRS and

• s −→c ∗R t iff s −→c ∗R′ t, where s is a term over the original signature and t
is a constructor term.

Proof. As for Theorem 7, the fact that R′ is a constructor TRS is a trivial
consequence from the fact that R is a constructor TRS and the way in which
the left-hand sides are modified: only single variable arguments are added to
f and both id and cont are constructor symbols.

(⇒) We prove this direction by induction on the length of s −→c ∗R t. Since
the case when s is not rooted by f can easily be proved, we only consider
the remaining case. Thanks to Lemma 8, we can consider that s −→c ∗R t has
the form

s = f(t0) −→c ∗ε,R Cσ1[f(s1)]p −→c ∗p<,R Cσ1[f(t1)]p
−→c p,R Cσ1[Cσ2[f(s2)]p]p −→c ∗p.p<,R · · ·
−→c ∗p...p,R Cσ1[. . . Cσn[f(sn)]p . . .]p −→c ∗p...p<,R Cσ1[. . . Cσn[f(tn)]p . . .]p
−→c p...p,R Cσ1[. . . Cσn[rσ]p . . .]p
−→c ∗p...p≤,R Cσ1[. . . Cσn[un]p . . .]p
−→c ∗p...p≤,R Cσ1[. . . Cσn−1[un−1]p . . .]p
−→c ∗R · · ·
−→c ∗R Cσ1[u1] −→c ∗R t

14

where σ1, . . . , σn, σ are constructor substitutions, u1, . . . , un are constructor
terms, and bσi = ti+1 and sσi = si for all i = 1, . . . , n, and aσ = tn. By the
induction hypothesis, we have

• si −→c ∗R′ ti for all i = 1, . . . , n,

• rσ −→c ∗R′ un,

• Cσi[ui] −→c ∗R′ ui−1 for all i = 2, . . . , n, and

• Cσ1[u1] −→c ∗R′ t.

By definition, in R′, we have f(t0) −→c R′ ftail(t0, id). By Lemma 5, we have
ftail(t0, id) −→c ∗R′ ftail(tn, cont(. . . cont(id, ymσ1), . . . ymσn)). Moreover, since
aσ = tn, we have

ftail(tn, cont(. . . cont(id, ymσ1), . . . ymσn))
−→c R′ eval(cont(. . . cont(id, ymσ1), . . . ymσn), rσ)

Now, by Lemma 9, we have

eval(cont(. . . cont(id, ymσ1), . . . ymσn), rσ) −→c
∗
R′ eval(id, t)

And, finally, by applying the base case of eval we get

eval(id, t) −→c R′ t

(⇐) The proof is analogous by applying Lemma 5 and 9 in the opposite
direction. 2

3.3. Well-typedness

Finally, we conclude this section by observing that, if R is a well-typed
TRS, so is Tail(R, f). This is an easy consequence of the following facts:

• Let us consider that f is defined in R by the following rules:

f(cn) → r
f(tn) → C[f(sn)]
. . .

f(t′n) → C ′[f(s′n)]

15

Here, we should consider a new type of the following form:

data C = id | cont1(C,D1, . . . ,Dm) | . . . | contk(C,D′1, . . . ,D
′
j)

where id and cont1, . . . , contk are fresh constructor symbols, Dm are the
types of the variables ym in C[], and D′j are the types of the variables

y′j in C ′[].

• Assuming that the type of the function f is T1 × . . .× Tn → T, the
types of the new functions introduced by the transformation are the
following:

ftail :: T1 × . . .× Tn × C→ T
eval :: C× T→ T

• Now, one can prove that the application of all of the new rules intro-
duced by the transformation preserve well-typed terms:

– For the initial rules, f(xn)→ ftail(xn, id) and eval(id, x)→ x, the
claim follows trivially.

– Consider now a rule of the form ftail(tn, k)→ eval(k, r). By assum-
ing that the term ftail(tn, k) is well-typed, we have that k has type
C. Therefore, eval(k, r) is also well-typed when r is well-typed in
the original TRS.

– Consider a rule of the form ftail(tn, k) → ftail(sn, cont1(k, ym)).
By assuming that the term ftail(tn, k) is well-typed, we have that
k has type C. Therefore, ftail(sn, cont1(k, ym)) is also well-typed
when C[f(sn] is well-typed in the original TRS.

– Finally, let us consider a rule of the form eval(cont1(k, ym), w) →
eval(k, C[w]). By assuming that eval(cont1(k, ym), w) is well typed,
we have that k has type C, ym has type Dm, and w has type T.
Therefore, C[w] has type T when f(tn) → C[f(sn)] is well-typed
and, thus, eval(k, C[w]) is well-typed too.

4. Discussion and Future Work

In this paper, we have presented a technique for transforming recursive
functions—defined by a term rewriting system—into tail recursive form. We
have proved the correctness of the transformation for constructor-based re-
duction (a form of innermost reduction) over constructor rewrite systems.

16

Despite the fact that converting a function to tail recursive form is a
fundamental problem, the only well-known automatic transformation we are
aware of in the literature is the CPS-transformation that introduces higher-
order lambda abstractions. In this work, in contrast, we have presented a
direct transformation that keeps the transformed program in the (first-order)
term rewriting setting. As mentioned in Section 1, a similar approach can be
found in Wand’s seminal paper [5], where continuations are represented by
data structures. However, the examples presented by Wand required some
eureka steps and, therefore, no automatic technique is introduced. Of course,
one could use a conventional CPS-transformation and, then, apply a defunc-
tionalization post-process to remove higher-order expressions, as proposed by
Danvy and Nielsen [9].5 However, in this case, proving the correctness of the
combined transformation would be much more involved than in our direct
approach, since one should be able to deal with the intermediate higher-order
term rewriting systems. Actually, to the best of our knowledge, this is the
first fully automatic transformation that directly converts functions to tail
recursive form in a (first-order) term rewriting setting.

An interesting topic for future work is the extension of the conversion
algorithm in order to also introduce accumulators. Let us illustrate the aim
of this extension with an example. Here, we consider an example from [5, 2]
to generate the well-known reverse with an accumulating parameter from the
naive reverse. We start with the following definition of function reverse:

reverse(nil) → nil
reverse(x : xs) → app(reverse(xs), [x])

app(nil, ys) → ys
app(x : xs, ys) → x : app(xs, ys)

Transforming function reverse to tail recursion using function Tail, we get

reverse(xs) → rev(xs, id)
rev(nil, k) → eval(k, nil)

rev(x : xs, k) → rev(xs, cont(k, x))
eval(id, ws) → ws

eval(cont(k, x), ws) → eval(k, app(ws, [x]))

5Nevertheless, it should be noted that the restriction to constructor-based reduction
that we found essential for proving the correctness of the transformation has no counterpart
in [9]. Therefore, the application of the general scheme in [9] to rewrite systems so that
the original semantics is preserved is still not trivial.

17

together with the original definition of function app. Now, the key observa-
tion is that the expression eval(k, w) always reduces to app(w, ys) for some
list ys (that depends on k). We can prove this inductively:

• The base case is trivial with list ys = nil since eval(id, w) = w =
app(w, nil).

• For the inductive case, we assume that eval(k, w) = app(w, ys) for some
list ys. Now, we prove that the claim also holds for eval(cont(k′, x), w).
By unfolding the call, we have:

eval(cont(k′, x), w) = eval(k′, app(w, [x]))

By applying the inductive hypothesis, we have

eval(k′, app(w, [x])) = app(app(w, [x]), ys)

for some list ys. Finally, by the associativity of app and the definition
of app, we have

app(app(w, [x]), ys) = app(w, app([x], ys)) = app(w, x : ys)

and the claim follows.

Therefore, we do not really need to use the function eval and can safely
replace it by the list ys above:

reverse(xs) → rev(xs, nil)
rev(nil, ys) → ys

rev(x : xs, ys) → rev(xs, x : ys)

Automating this process is clearly far from trivial and may require partial
evaluation techniques for rewrite systems [10, 11, 12] (e.g., for finding patterns
for continuation terms) as well as the assistance of a theorem prover (for
proving that the proposed patterns are indeed true).

We consider the (semi-)automated introduction of accumulators a chal-
leging topic for future work.

18

References

[1] N. Nishida, G. Vidal, Program inversion for tail recursive functions, in:
M. Schmidt-Schauß (Ed.), Proceedings of the 22nd International Con-
ference on Rewriting Techniques and Applications (RTA 2011), Vol. 10
of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011,
pp. 283–298.

[2] A. Field, P. Harrison, Functional Programming, Addison-Wesley, 1988.

[3] G. D. Plotkin, Call-by-name, call-by-value and the lambda-calculus,
Theor. Comput. Sci. 1 (2) (1975) 125–159.

[4] G. L. Steele, Rabbit: A compiler for Scheme (M. Sc. Thesis), Tech. Rep.
AI-TR-474, Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts (May 1978).

[5] M. Wand, Continuation-based program transformation strategies, J.
ACM 27 (1) (1980) 164–180.

[6] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge Uni-
versity Press, 1998.

[7] E. Ohlebusch, Advanced topics in term rewriting, Springer, 2002.

[8] P. Schneider-Kamp, J. Giesl, A. Serebrenik, R. Thiemann, Automated
termination proofs for logic programs by term rewriting, ACM Trans.
Comput. Log. 11 (1) (2009) 1–52.

[9] O. Danvy, L. R. Nielsen, Defunctionalization at work, in: PPDP, ACM,
2001, pp. 162–174.

[10] E. Albert, G. Vidal, The narrowing-driven approach to functional logic
program specialization, New Generation Computing 20 (1) (2002) 3–26.

[11] A. Bondorf, Compiling Laziness by Partial Evaluation, in: S. P. Jones,
G. Hutton, C. K. Holst (Eds.), Functional Programming, Glasgow 1990,
Springer-Verlag, Berlin, 1991, pp. 9–22.

[12] J. G. Ramos, J. Silva, G. Vidal, Fast Narrowing-Driven Partial Eval-
uation for Inductively Sequential Systems, in: O. Danvy, B. C. Pierce

19

(Eds.), Proceedings of the 10th ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP’05), ACM Press, 2005, pp. 228–
239.

20

