
J Autom Reasoning
DOI 10.1007/s10817-016-9373-5

Relative Termination via Dependency Pairs

José Iborra1 · Naoki Nishida2 · Germán Vidal3 ·
Akihisa Yamada4

Received: 4 April 2016 / Accepted: 8 April 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract A term rewrite system is terminating when no infinite reduction sequences are
possible. Relative termination generalizes termination by permitting infinite reductions as
long as some distinguished rules are not applied infinitelymany times. Relative termination is
thus a fundamental notion that has been used in a number of different contexts, like analyzing
the confluence of rewrite systems or the termination of narrowing. In this work, we introduce
a novel technique to prove relative termination by reducing it to dependency pair problems.
To the best of our knowledge, this is the first significant contribution to Problem #106 of the
RTA List of Open Problems. We first present a general approach that is then instantiated to
provide a concrete technique for proving relative termination. The practical significance of
our method is illustrated by means of an experimental evaluation.

Keywords Term rewriting · Dependency pairs · Termination

Germán Vidal is partially supported by the EU (FEDER) and the Spanish Ministerio de Economía y
Competitividad under Grant TIN2013-44742-C4-1-R and by the Generalitat Valenciana under grant
PROMETEOII2015/013. Akihisa Yamada is supported by the Austrian Science Fund (FWF): Y757.

B Akihisa Yamada
akihisa.yamada@uibk.ac.at

José Iborra
pepeiborra@gmail.com

Naoki Nishida
nishida@is.nagoya-u.ac.jp

Germán Vidal
gvidal@dsic.upv.es

1 London, UK

2 Graduate School of Information Science, Nagoya University, Nagoya, Japan

3 MiST, DSIC, Universitat Politècnica de València, Valencia, Spain

4 Institute of Computer Science, University of Innsbruck, Innsbruck, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-016-9373-5&domain=pdf
http://orcid.org/0000-0001-8872-2240

J. Iborra et al.

1 Introduction

Analyzing whether a program terminates or not is a fundamental problem that has been
extensively studied in almost all programming paradigms. For term rewrite systems (TRSs),
termination analysis has attracted considerable attention (see, e.g., the survey by Zantema
[37] and the termination portal1), and various automated termination provers for TRSs have
been developed: AProVE [11], TTT2 [24], NaTT [34], etc. Among them the dependency
pair (DP) method [2,13] and its successor theDP framework [12] became amodern standard.

Termination of a TRS is usually checked for all possible reduction sequences. In some
cases, however, one is interested in a generalized notion, called relative termination [9,21].
Roughly speaking, a TRS R is relatively terminating w.r.t. another TRS B, which we call
the base in this paper, when any infinite reduction using both systems contains only a finite
number of steps given with rules from R. For instance, consider the following base:

Bcomlist = { cons(x, cons(y, ys)) → cons(y, cons(x, ys)) }
which specifies the property of commutative lists (i.e., that the order of elements is irrelevant).
Termination of operations on commutative lists, described by a TRS R, can be analyzed as
the relative termination of R w.r.t. Bcomlist. Note also that the base Bcomlist is clearly non-
terminating.

In this paper, we present a new technique for proving relative termination by reducing it
to the finiteness of dependency pair problems. To the best of our knowledge, we provide the
first significant contribution to Problem #106 of the RTA List of Open Problems2:

Can we use the dependency pair method to prove relative termination?

Relative termination has already been used in various contexts: proving confluence of a
rewrite system [9,16]; liveness properties in the presence of fairness [23]; and termination
of narrowing [18,29,33], an extension of rewriting to deal with non-ground terms (see, e.g.,
[17]). Moreover, analyzing relative termination can also be useful for other purposes, like
dealing with random values or considering rewrite systems with so-called extra-variables
(i.e., variables that occur in the right-hand side of a rule but not in the corresponding left-hand
side). For instance, the following base Brand specifies a random number generator:

Brand = { rand(x) → x, rand(x) → rand(s(x)) }
We have rand(0) →∗

Brand
sn(0) for arbitrary n ∈ N. Now, consider

Rquot = { x − 0 → x, s(x) − s(y) → x − y,

quot(0, s(y)) → 0, quot(s(x), s(y)) → s(quot(x − y, s(y))) }
from Arts and Giesl [2]. Termination of Rquot can be shown using the DP method [2].
However, using previously known techniques, it is not possible to prove thatRquot is relatively
terminating w.r.t. Brand. Note also that the relative termination of Rquot w.r.t. Brand is not
at all obvious, since Rquot is not relatively terminating w.r.t. the following similar variant
Bgen:

Bgen = {gen → 0, gen → s(gen) }

1 Available from URL http://www.termination-portal.org/.
2 http://www.win.tue.nl/rtaloop/.

123

http://www.termination-portal.org/
http://www.win.tue.nl/rtaloop/

Relative Termination via Dependency Pairs

which is considered in the context of termination of narrowing [18,29,33]. Indeed, we can
construct the following infinite reduction sequence using Bgen:

s(gen) − s(gen) →Rquot gen − gen →∗
Bgen

s(gen) − s(gen) →Rquot · · ·
We expect our technique to be also useful to deal with TRSs with extra-variables. In

principle, these systems are always non-terminating, since extra-variables can be replaced by
any term. However, one can still consider an interesting termination property: Is the system
terminating if the extra-variables can only be instantiated with terms built from a restricted
signature? Consider, e.g., the following TRS from [28]:

R = { f(x,0) → s(x), g(x) → h(x, y), h(0, x) → f(x, x), a → b }
This system is clearly non-terminating due to the extra variable in the second rewrite rule.
However, by assuming that y can only take values built from constructor symbols (e.g.,
natural numbers), one can reformulate these rewrite rules as follows:

R′ = { f(x,0) → s(x), g(x) → h(x,gen), h(0, x) → f(x, x), a → b }
using Bgen above. Obviously, R′ ∪ Bgen is still non-terminating, since Bgen is already non-
terminating. Nevertheless, one can still prove the relative termination ofR′ w.r.t.Bgen, which
is an interesting property since one can ensure terminating derivations by using an appropriate
heuristics to instantiate extra-variables.

Another interesting application of relative termination is test case generation. For exam-
ple, in the QuickCheck tool for property-based testing, lists over, e.g., natural numbers are
generated randomly. Assume f and g are defined externally by a TRSRfg, and consider the
TRS Rtest consisting of the following rules:

rands(0, y) → done(y) eq(x, x) → true

rands(s(x), y) → rands(x, cons(rand(0), y))

tests(0) → true true ∧ y → y

tests(s(x)) → test(rands(rand(0),nil)) ∧ tests(x) false ∧ y → false

test(done(y)) → eq(f (y), g(y))

where lists are built from nil and cons. Execution of tests(sn(0)) tests the equivalence
between f and g by feeding them random inputs n times. Even when f and g are defined
by f (x) → x and g(x) → x , AProVE fails to prove the relative termination of Rtest ∪ Rfg

w.r.t. Brand.
In this paper, we propose a method to prove relative termination using the dependency

pair framework. We implemented the proposed method in the termination tool NaTT3 and
show its significance through experiments. Using results of this paper and [35], NaTT can
prove the relative termination of Rquot w.r.t. Brand, and that of Rtest ∪ Rfg w.r.t. Brand for,
e.g., naive and tail recursive definitions of summation as f and g, respectively.

This paper is organized as follows. In Sect. 2, we briefly review some notions and notations
of term rewriting. In Sects. 3–5, we present our main contributions for reducing relative
termination to a dependency pair problem. In Sect. 6, we show that the subterm criterion
and the usable rule argument is applicable under certain conditions. Then, Sect. 7 describes
implementation issues , andpresents selected results froman experimental evaluation. Finally,
Sect. 8 compares our technique with some related work, and Sect. 9 concludes and points
out some directions for future research.

3 Available at http://www.trs.cm.is.nagoya-u.ac.jp/NaTT/.

123

http://www.trs.cm.is.nagoya-u.ac.jp/NaTT/

J. Iborra et al.

2 Preliminaries

We assume some familiarity with basic concepts and notations of term rewriting. We refer
the readers to, e.g., [4] for further details. Here we recall some fundamental notions needed
in this paper.

A signature F is a set of function symbols. Given a set of variables V with F ∩ V = ∅,
we denote the domain of terms by T (F,V). We use f,g, . . . to denote function symbols and
x, y, . . . to denote variables. The root symbol of a term t = f (t1, . . . , tn) is f and denoted
by root(t). We assume an extra fresh constant � called a hole. A context is a term C[] where
the hole occurs exactly once. We write C[t] to denote the result of placing t in the hole of
C[].

A position p in a term t is represented by a finite sequence of natural numbers, where ε

denotes the root position. We let t |p denote the subterm of t at position p, and t[s]p the result
of replacing the subterm t |p by the term s. We denote by s � t that t is a subterm of s, and
by s � t that it is a proper subterm.

We write Var(t) to denote the set of variables appearing in a term t . A substitution is a
mapping σ : V → T (F,V), which is extended to a morphism from T (F,V) to T (F,V) in
the natural way. We denote the application of a substitution σ to a term t by tσ .

A rewrite rule l → r is a pair of terms such that l /∈ V and Var(l) ⊇ Var(r). The terms
l and r are called the left-hand side and the right-hand side of the rule, respectively. A term
rewrite system (TRS) is a set of rewrite rules. Given a TRS R, we write FR for the set of
function symbols appearing inR,DR for the set of the defined symbols, i.e., the root symbols
of the left-hand sides of the rules, and CR for the set of constructors; CR = FR \ DR.

For a TRS R, we define the associated rewrite relation −→R as follows: given terms
s, t ∈ T (F,V), s −→R t holds iff there exist a position p in s, a rewrite rule l → r ∈ R and

a substitution σ with s|p = lσ and t = s[rσ]p; the rewrite step is often denoted by s
p−→R t

to make the rewritten position explicit, and s >ε−→R t if the position is strictly below the
root.

Given a binary relation R, we denote its transitive closure by R+ and reflexive transitive
closure by R∗. We use the following generalized notion of orders.

Definition 1 (order pair) We say that (�,�) is a (well-founded) order pair on carrier A if
� is a quasi-order on A, � is a (well-founded) strict order on A, and they are compatible,
i.e., � ◦ � ◦ � ⊆ �.

2.1 The Dependency Pair Framework

The dependency pair (DP) method [2,13] and its successor, the DP framework [12], enables
analyzing cyclic dependencies between rewrite rules, and has become one of themost popular
approaches to proving termination in term rewriting. Indeed, it underlies virtually all modern
termination tools for TRSs.

Let us briefly recall the fundamentals of the DP framework. Here, we consider that the
signature F is implicitly extended with fresh function symbols f � for each defined function
f ∈ DR. Also, given a term t = f (t1, . . . , tn)with f ∈ DR, we let t� denote f �(t1, . . . , tn).
If l → r ∈ R and t is a subterm of r with a defined root symbol, then the rule l� → t� is a
dependency pair ofR. The set of all dependency pairs ofR is denoted by DP(R). Note that
DP(R) is also a TRS.

A key ingredient in the DP framework is the notion of a DP problem, which is a pair
(P,R) of a set P of dependency pairs and a TRSR. The DP problem (P,R) is called finite

123

Relative Termination via Dependency Pairs

if there is no infinite (P,R)-chain: A (P,R)-chain (à la [13]) is a possibly infinite rewrite
sequence of the form:

s�
1

ε−→P t�1 −→∗
R s�

2
ε−→P t�2 −→∗

R s�
3

ε−→P · · ·
which informally represents a sequence of calls that can occur during a reduction. Then the
basic result of Arts and Giesl [2] is formulated as follows:

Proposition 1 ([2,12]) A TRS R is terminating iff the DP problem (DP(R),R) is finite.

To prove DP problems finite, various techniques have been proposed and implemented in
current termination tools, e.g., AProVE, TTT2 , NaTT, and so on. Among them, reduction
pairs [2] constitute a fundamental technique: A reduction pair is a well-founded order pair
(�,>) on terms such that� is closed under contexts and substitutions, and> is closed under
substitutions.

Proposition 2 ([2,12,13]) Let (P,R) be a DP problem and (�,>) a reduction pair such
that P ∪ R ⊆ �. The DP problem (P,R) is finite iff (P \ >,R) is.

2.2 Relative Termination

Given two relations R and B, we denote the relation B∗ · R · B∗ by R/B. In particular, for
two TRSs R and B, we denote →R/→B by −→R/B.

Let us now recall the formal definition of relative termination:

Definition 2 (relative termination [21]) Let R and B be TRSs. We say that R relatively
terminates w.r.t. B, or simply that R/B is terminating, if the relation −→R/B is terminating.
We say that a term t is R/B-nonterminating if it starts an infinite −→R/B derivation, and
R/B-terminating otherwise.

In other words, R/B is terminating if every (possibly infinite) →R∪B derivation contains
only finitely many →R steps. Note that sequences of →B steps are “collapsed” and seen as
a single −→R/B step. Hence, an infinite −→R/B derivation must contain an infinite number of
→R steps and thus only finite →B subderivations.

Geser [9] proposed a technique to reduce relative termination of TRSs to relative termina-
tion of simpler TRSs. This technique is later reformulated in the DP framework for proving
standard termination, as rule removal processors [12]. We say a reduction pair (�,>) is
monotone if > is closed under contexts.

Proposition 3 (relative rule removal processor)LetRandB be TRSs, and (�,>)a monotone
reduction pair such that R ∪ B ⊆ �. Then R is relatively terminating w.r.t. B if and only if
R \ > is relatively terminating w.r.t. B \ >.

3 Relative Termination as a Dependency Pair Problem

The main goal of this paper is to introduce a counterpart of Proposition 1 for proving relative
termination. In this section, we present a general approach that depends on the existence
of a proof ordering4 (see below) for the given TRSs. In the next section, we will focus on
providing syntactic conditions that guarantee the existence of such a proof ordering.

4 Note that our notion of “proof ordering” is not related to that in [5,6].

123

J. Iborra et al.

Let us start with some basic conditions for relative termination in terms of DP problems.
First, it is folklore that, given two TRSsR and B, termination ofR ∪ B implies termination
of R/B. Therefore, an obvious sufficient condition for relative termination can be stated as
follows:

Proposition 4 For TRSsR andB,R/B is terminating if the DP problem (DP(R∪B),R∪B)

is finite.

Observe that DP(R) ∪DP(B) ⊆ DP(R∪ B) always holds, but DP(R∪ B) = DP(R) ∪
DP(B) is not always true when there are shared symbols.

On the other hand, using a proof technique from the standard DP framework, we can easily
prove the following necessary condition for relative termination.

Proposition 5 Let R and B be TRSs. If R/B is terminating, then the DP problem (DP(R),

R ∪ B) is finite.

Proof We prove that any infinite (DP(R),R ∪ B)-chain corresponds to an infinite −→R/B
derivation. Consider a chain

s�
1

ε−→DP(R) t�1
>ε−→R∪B s�

2
ε−→DP(R) t�2

>ε−→R∪B · · ·

For every i = 1, 2, . . . , there is a dependency pair l�i → u�
i ∈ DP(R) and a substitution σi

such that si = liσi and ti = uiσi . As every dependency pair li → ui corresponds to a rule
li → ri [ui]pi in R, we can construct the derivation

s1 −→R r1σ1[t1]p1 −→∗
R∪B r1σ1[s2]p1 −→R r1σ1[r2σ2[t2]p2]p1 −→∗

R∪B · · ·
which is an infinite −→R/B derivation. This concludes the proof. ��

Now, we aim at finding more precise characterizations of relative termination in terms of
DP problems. We introduce the multisets that we will use to prove our main results.

Definition 3 LetRbe aTRSand t a term.Themultiset�R(t)ofmaximalR-defined subterms
of t is defined as follows:

– �R(x) = ∅ if x ∈ V ,
– �R(f (t1, . . . , tn)) = �R(t1) ∪ · · · ∪ �R(tn) if f /∈ DR, and
– �R(f (t1, . . . , tn)) = { f (t1, . . . , tn)} if f ∈ DR.

It is well known that a well-founded order pair can be extended to a well-founded order
pair over multisets [32].

Definition 4 (multiset extension) The multiset extension of an order pair (�,�) on A is the
order pair (�mul, �mul) on multisets over A which is defined as follows: X �mul Y if X and
Y are written X = X ′ ∪ {x1, . . . , xn} and Y = Y ′ ∪ {y1, . . . , yn} such that

– ∀y ∈ Y ′. ∃x ∈ X ′. x � y, and
– ∀i ∈ {1, . . . , n}. xi � yi .

We have X �mul Y if it also holds that X ′ �= ∅.
Our main result in this section requires a particular order pair that satisfies the following

property:

123

Relative Termination via Dependency Pairs

Definition 5 LetR and B be TRSs. We say that a pair (�,�) of relations is a proof ordering
for R/B, if it is a well-founded order pair on R/B-terminating terms, and satisfies the
following assumptions:

Assumption 1 s →R t implies �R(s) �mul �R(t), and

Assumption 2 s →B t implies �R(s) �mul �R(t).

In the following, we say that R and B admits a proof ordering if there exists at least one
proof ordering for R/B.

A natural question is whether such a proof ordering exists for some given TRSsR and B.
We will investigate this question in the next section.

Now, we can show the following auxiliary result, which is an easy consequence of the fact
that the multiset extension preserves well-foundedness.

Lemma 1 Let R and B be TRSs that admit a proof ordering. A term s is R/B-terminating
if all elements in �R(s) are R/B-terminating.

Proof We prove the claim by contradiction. Assume that all elements in �R(s) are R/B-
terminating but s is not R/B-terminating. Hence there exists an infinite sequence of the
following form:

s −→∗
B t1 −→R t ′1 −→∗

B t2 −→R t ′2 −→∗
B · · · (1)

Using Assumptions 1 and 2, we obtain the following sequence for the proof ordering (�,�):

�R(s) �mul �R(t1) �mul �R(t ′1) �mul �R(t2) �mul �R(t ′2) �mul · · ·
According to Thiemann et al. [32, Section 3] and the assumption that (�,�) is awell-founded
order pair onR/B-terminating terms, the multiset extension (�mul,�mul) is a well-founded
order pair on multisets ofR/B-terminating terms. Hence, �R(s) cannot start such an infinite
�mul-reduction sequence, which contradicts our assumption. Hence the infinite sequence (1)
cannot exist and thus s is R/B-terminating. ��

Following the common practice in the termination literature, we say that an R/B-
nonterminating term is minimal if all its proper subterms are R/B-terminating. It is clear
that any R/B-nonterminating term has some minimal R/B-nonterminating subterm. The
following lemma proves an essential result in our approach.

Lemma 2 Let R and B be TRSs that admit a proof ordering. If t is a minimal R/B-
nonterminating term, then root(t) ∈ DR.

Proof We prove the claim by contradiction. Consider a minimalR/B-nonterminating term s
such that root(s) /∈ DR. Since root(s) /∈ DR, all elements in�R(s) are proper subterms of s,
which areR/B-terminating due to minimality. Lemma 1 implies that s isR/B-terminating,
and hence we have a contradiction. ��

Using the previous result, we can state the following sufficient condition which states that
termination of R/B coincides with the finiteness of the DP problem (DP(R),R ∪ B), even
if B is non-terminating. Here, we further impose thatR and B share no defined symbol, i.e.,
DR ∩ DB = ∅.
Theorem 1 Let R and B be TRSs that admit a proof ordering. Let DR ∩ DB = ∅. Then,
R/B is terminating iff the DP problem (DP(R),R ∪ B) is finite.

123

J. Iborra et al.

Proof The “only-if” direction follows from Proposition 5. We show the “if” direction by
constructing an infinite chain from an arbitrary infinite −→R/B sequence:

s1 −→∗
B t1 −→R s2 −→∗

B t2 −→R · · ·
W.l.o.g., we consider s1 to be minimal. By Lemma 2, we have root(s1) ∈ DR. Due to the
assumption DR ∩ DB = ∅, a →B-reduction cannot occur at the root position unless an
→R-reduction rewrites the root symbol. Thus, due to minimality, there exists some n such
that

s1
>ε−→∗

B t1
>ε−→R · · · >ε−→R sn

>ε−→∗
B tn

ε−→R sn+1

Let tn = lσ and sn+1 = rσ for l → r ∈ R, and consider a minimal R/B-nonterminating
subterm u of sn+1. Here, tn is minimal since s1 is. Thus, there must exist a non-variable
subterm v of r such that u = vσ . Again by Lemma 2, we have root(v) ∈ DR and thus
l� → v� ∈ DP(R). We obtain

s�
1

>ε−→∗
B t�1

>ε−→R · · · >ε−→R s�
n

>ε−→∗
B t�n

ε−→DP(R) u�

Continuing the construction from u, we obtain an infinite (DP(R),R ∪ B)-chain. ��
The conditionDR∩DB = ∅will be lifted in Sect. 5. However, at this point, it is necessary

as the following example illustrates:

Example 1 Consider the following TRSs:

R = { f(x) → x } B = { f(x) → f(f(x)) }
with DR ∩ DB �= ∅. Here, we can define a proof ordering (�, �) for R/B as follows:
� = →+

R/B and � = →∗
B; note that � is well-founded on R/B-terminating terms, i.e.,

variables. Here, the DP problem (DP(R),R ∪ B) is trivially finite as DP(R) = ∅, butR/B
is not terminating (consider, e.g., the infinite derivation f(x) →B f(f(x)) →R f(x) →B · · ·).

We note that, to make Theorem 1 applicable in practice, we must find a feasible way to
check ifR andB admit a proof ordering. In the next section, we introduce syntactic conditions
on R and B for this purpose.

4 Syntactic Conditions for Admitting a Proof Ordering

In this section, given TRSs R and B, we focus on providing syntactic conditions on R and
B such that they admit a proof ordering.

First, we consider satisfying Assumption 1. To this goal, we have the following simple
sufficient condition:

Lemma 3 Let R be a TRS and (�,�) an order pair.5 If →R ·� ⊆ �, then s →R t implies
�R(s) �mul �R(t).

Proof Let s
p−→R t and q be the shortest prefix of p such that root(s|q) ∈ DR, that is,

�R(s) = �R(s[]q) ∪ {s|q}. Note that q always exists since root(s|p) ∈ DR. We distinguish
the following cases:

5 Actually, � can be an arbitrary reflexive relation.

123

Relative Termination via Dependency Pairs

– Assume that q < p. Since root(s|q) = root(t |q) ∈ DR, we have �R(t) = �R(s[]q) ∪
{t |q}. From s →R t we get s|q � t |q by the assumption, and thus �R(s) �mul �R(t).

– Assume that p = q . We have �R(t) = �R(s[]p)∪ �R(t |p). For every t ′ ∈ �R(t |p), we
have s|p →R t |p � t ′ and thus s|p � t ′ by the assumption. We conclude �R(s) �mul

�R(t). ��

On the other hand, satisfying Assumption 2 is not that easy. For this purpose, we require
B to be non-duplicating, i.e., no variable has more occurrences in the right-hand side of a
rule than in the left-hand side, together with the following condition:

Definition 6 (dominance) We say that a TRSR dominates a TRS B iff the right-hand sides
of all rules in B contain no symbol from DR.

Under these assumptions, we will show that the following definition yields indeed a proof
ordering for R/B.

Definition 7 For two TRSsR and B, the pair (�R/B,�R/B) of relations on terms is defined
as follows:�R/B = (�R∪→B)∗ and�R/B = (�R/→B)+. Here,�R is defined as follows:
s �R t iff s →R · � t , or s � t with root(s) ∈ DR.

The relations �R/B and �R/B enjoy the following key property:

Lemma 4 Let R and B be TRSs such that B is non-duplicating and R dominates B. Then
(�R/B,�R/B) is a well-founded order pair on R/B-terminating terms.

Proof Trivially �R/B is a quasi-order, and �R/B is transitive. Compatibility is also clear
from the definition. The remaining goal is to prove that �R/B is well-founded on R/B-
terminating terms. To this end, suppose on the contrary that there exists an infinite �R/B-
sequence, that is,

s1 �R t1 →∗
B s2 �R t2 →∗

B · · · (2)

starting fromR/B-terminating term s1. Note that (2) is actually an infinite (→R∪→B ∪�)-
sequence. Since s1 isR/B-terminating, (2) cannot contain infinitely many→R-steps. Hence
there must be some k such that

sk � tk →∗
B sk+1 � tk+1 →∗

B · · ·
where root(si) ∈ DR for each i = k, k + 1, Thus, the number of DR symbols strictly
decreases in each � step. On the other hand, the non-duplication and dominance conditions
entails that the number does not increase by →B steps. Hence, the sequence must terminate
and concludes the desired well-foundedness. ��

Now, in order to prove that �R/B satisfies Assumption 2, we need the following auxiliary
result, where MVar(s) denotes the multiset of variables occurring in a term s.

Lemma 5 Let R and B be TRSs. For every term t and substitution σ , �R(tσ) �mul
R/B⋃

x∈MVar(t) �R(xσ).

Proof We prove the claim by structural induction on t . It is trivial if t is a variable. Hence,
we assume t = f (t1, . . . , tn). We proceed by case analysis on whether f ∈ DR or not.

123

J. Iborra et al.

– If f ∈ DR, then we have �R(tσ) = {tσ }. For every x ∈ MVar(t), we have tσ �R xσ

and hence tσ �R/B xσ . Thus we conclude the claim.
– If f /∈ DR, then we have �R(tσ) = �R(t1σ) ∪ · · · ∪ �R(tnσ). Applying the induction

hypothesis, we obtain

�R(tσ) = �R(t1σ) ∪ · · · ∪ �R(tnσ)

�R/B
⋃

x∈MVar(t1) �R(xσ) ∪ · · · ∪ ⋃
x∈MVar(tn) �R(xσ)

= ⋃
x∈MVar(t) �R(xσ)

Note thatMVar(t) = MVar(t1) ∪ · · · ∪ MVar(tn). ��

The following lemma is the key result of this section:

Lemma 6 Let R and B be TRSs such that B is non-duplicating and R dominates B. If
s →B t , then �R(s) �mul

R/B �R(t).

Proof We prove that s
p−→B t implies �R(s) �mul

R/B �R(t) for arbitrary terms s and t and a
position p. We distinguish the following two cases:

– First, assume that p has a proper prefix q such that s|q ∈ �R(s). We have

�R(s) = �R(s[]q) ∪ {s|q} and �R(t) = �R(s[]q) ∪ {t |q}
Since s|q →B t |q , we have s|q �R/B t |q and thus �R(s) �mul

R/B �R(t).
– Assume now that sq /∈ �R(s) for any proper prefix q of p. Let l → r ∈ B, s|p = lσ ,

and t = s[rσ]p . In this case, we have

�R(s) = �R(s[]p) ∪ �R(lσ) and �R(t) = �R(s[]p) ∪ �R(rσ)

From Lemma 5, we have �R(lσ) �mul
R/B

⋃
x∈MVar(l) �R(xσ). Since R dominates B, r

cannot contain symbols from DR. Therefore,

�R(lσ) �mul
R/B

⋃
x∈MVar(l) �R(xσ) and �R(rσ) = ⋃

x∈MVar(r) �R(xσ)

Since B is non-duplicating, we have MVar(l) ⊇ MVar(r) and thus �R(lσ) ⊇ �R(rσ).
Therefore, we conclude �R(s) �mul

R/B �R(t). ��

Finally, since the premise of Lemma 3 trivially holds for the order pair of Definition 7,
the following result is a direct consequence of Theorem 1, Lemma 3, and Lemma 6.

Corollary 1 Let R and B be TRSs such that B is non-duplicating, R dominates B, and
DR ∩ DB = ∅. Then, R/B is terminating iff the DP problem (DP(R),R ∪ B) is finite.

The following simple example illustrates that Corollary 1 indeed advances the state of the
art in proving relative termination.

Example 2 Consider the following two TRSs:

R = { g(s(x), y) → g(f(x, y), y) } B = { f(x, y) → x, f(x, y) → f(x, s(y)) }
Since they satisfy the conditions of Corollary 1, we obtain the DP problem (DP(R), R∪B),
where DP(R) = {g�(s(x), y) → g�(f(x, y), y) }. The DP problem can be proved finite

123

Relative Termination via Dependency Pairs

using classic techniques, e.g., polynomial interpretation Pol such that fPol(x, y) = x . On the
other hand, all the previous tools we know that support relative termination, namelyAProVE
(ver 2014), TTT2 (ver 1.15), Jambox (ver 2006) [8], and TPA (ver 1.1) [22], fail on this
problem.

The dominance condition and the non-duplication condition are indeed necessary for
Corollary 1 to hold. It is easy to see that the former condition is necessary:

Example 3 Consider the two TRSs R = {a → b } and B = {b → a }, which violates
the dominance condition. Obviously, R/B is not terminating. However, (DP(R),R ∪ B) is
trivially finite since DP(R) = ∅.

The following example illustrates that the latter condition is also necessary:

Example 4 Consider the following two TRSs:

R = { a → b } B = { f(x) → c(x, f(x)) }
which violates the non-duplication condition. The DP problem (DP(R),R ∪ B) is trivially
finite since DP(R) = ∅. However, we have the following infinite −→R/B-derivation:

f(a) →B c(a, f(a)) →R c(b, f(a)) →B c(b, c(a, f(a))) →R c(b, c(b, f(a))) →B · · ·
Note that this is a counterexample against [18, Theorem 5].

5 Improving Applicability

When dominance and non-duplication are assumed, the condition DR ∩ DB = ∅ is not
necessary anymore. In order to show that this is indeed the case, let us recall the following
result by Geser [9]:

Proposition 6 Let R, B′, and B′′ be TRSs. Then, (R∪B′)/B′′ is terminating iff both R/(B′ ∪
B′′) and B′/B′′ are terminating.

The following result removes the condition DR ∩ DB = ∅ from Corollary 1:

Theorem 2 Let R and B be TRSs such that B is non-duplicating and R dominates B. Then,
R/B is terminating iff the DP problem (DP(R),R ∪ B) is finite.

Proof Let B′ be the set of rules in B that define DR symbols, i.e.,

B′ = { l → r ∈ B | root(l) ∈ DR }
and let B′′ = B \B′. Due to the dominance condition, the right-hand sides of B′ rules cannot
contain symbols from DR (= DR∪B′). Hence we have DP(B′) = ∅ and DP(R ∪ B′) =
DP(R).

First, observe that B′′ is non-duplicating, B′ dominates B′′, and DB′ ∩ DB′′ = ∅. Hence,
Corollary 1 ensures the termination of B′/B′′ via finiteness of the DP problem (DP(B′),B),
which is trivial sinceDP(B′) = ∅. Hence byProposition 6,R/B is terminating iff (R∪B′)/B′′
is terminating.

Next, observe that B′′ is non-duplicating, R ∪ B′ dominates B′′, and DR∪B′ ∩ DB′′ = ∅.
Hence by Corollary 1, (R ∪ B′)/B′′ is terminating iff the DP problem (DP(R),R ∪ B) is
finite. ��

123

J. Iborra et al.

The remaining two conditions, namely the dominance and non-duplication conditions
might be still too restrictive in practice. For instance, only six out of 44 examples in the
relative TRS category of TPDB 9.0 satisfy both conditions.

Luckily, we can employ again Proposition 6 to relax the conditions, at the cost of losing
completeness. More precisely, we use the following corollary of Proposition 6:

Corollary 2 Let R, B′, and B′′ be TRSs. If (R ∪ B′)/B′′ is terminating, then R/(B′ ∪ B′′)
is terminating.

Consider TRSsR and B, and that we want to prove termination ofR/B but the conditions
of Theorem 2 do not hold. Then, we might still find a partition B = B′ � B′′ such that
R ∪ B′ and B′′ satisfy the conditions. If we succeed, then we can prove termination of R/B
as follows: First, we obtain termination of (R ∪ B′)/B′′ by Theorem 2, and then that of
R/(B′ ∪ B′′), i.e., R/B by Corollary 2.

Corollary 3 Let R and B be TRSs. If B is split into B = B′ � B′′ such that (1) B′′ is non-
duplicating, (2) R∪B′ dominates B′′, and (3) the DP problem (DP(R∪B′),R∪B) is finite,
then R/B is terminating.

Example 5 Consider the following TRSs R and B:

R = {a → b } B = { f(s(x)) → c(x, f(x)), c(x, c(y, z)) → c(y, c(x, z)) }
The first rule of B is duplicating, and hence Theorem 2 does not apply. However, we can split
B into the following TRSs B′ and B′′:

B′ = { f(s(x)) → c(x, f(x)) } B′′ = { c(x, c(y, z)) → c(y, c(x, z)) }
so that Corollary 3 applies. Now, we have DP(R ∪ B′) = { f�(s(x)) → f�(x) }, whose
finiteness can be proved using standard techniques.

To show termination of R/B by Corollary 3, two kinds of B-rules must not be used
infinitely many times, namely, duplicating ones (1), and those which violate the dominance
condition (2). This is not overly restrictive; intuitively speaking, the rules of the first kind
often (not always) duplicate anR-redex infinitely many times, and those of the second kind
often generate infinitely many R-redexes.

Example 6 Consider the following TRSs R and B:

R = {a′ → a′′ } B = {a → a′, d → c(a,d) }
Note thatR does not dominate B. The DP problem (DP(R), R ∪ B) is trivially finite since
DP(R) = ∅. However, R is not relatively terminating w.r.t. B, as the following infinite
derivation exists:

d →B c(a,d) →B c(a′,d) →R c(a′′,d)

→B c(a′′, c(a,d)) →B c(a′′, c(a′,d)) →R c(a′′, c(a′′,d)) →B · · ·
There is no partition of B, i.e., B = B′ � B′′ such that R ∪ B′ dominates B′′ and, thus,
Corollary 3 is not applicable, as expected.

Example 7 Consider an arbitrary nonempty TRS R together with a TRS B of the form
B = B′ � B′′ with B′′ = { f(x) → c(x, f(x)) }, which is duplicating and non-terminating
(so Corollary 3 does not apply). Here, regardless of the rules of R and B′, we can always
construct an infinite →R/B-reduction as in Example 4. Thus,R is not relatively terminating
w.r.t. B.

123

Relative Termination via Dependency Pairs

6 Relative Termination and Minimality

ADPchain s�
1

ε−→P t�1 −→∗
R s�

2
ε−→P t�2 −→∗

R · · · is said to beminimal if every t�i is terminating
w.r.t.R. It is well known that absence of infiniteminimal (DP(R),R)-chains implies absence
of infinite (DP(R),R)-chains and thus termination of R. A couple of techniques, namely
usable rules and the subterm criterion, have been proposed to prove absence of infinite
minimal chains [13].

Unfortunately, the minimality property (in terms of the standard DP framework) cannot
be assumed on DP problems produced by our relative termination criteria. Therefore, usable
rules and subterm criterion are not generally applicable.

Example 8 Consider the following TRSs R and B:

R = { f(s(x)) → f(x) } B = { inf → s(inf) }
Theorem 2 yields the DP problem ({f�(s(x)) → f�(x)},R ∪ B), which satisfies the subterm
criterion in the argument of f�. Moreover, since no rule is usable from the dependency pair
f�(s(x)) → f�(x), the usable rule technique would yield the DP problem ({f�(s(x)) →
f�(x)},∅), which any standard technique proves finite. However, R/B is not terminating as
the following infinite reduction exists:

f(s(inf)) →R f(inf) →B f(s(inf)) →R f(inf) →B · · ·
Nonetheless, wewill show that both the subterm criterion and usable rules are still applica-

ble when B satisfies the following condition:

Definition 8 (quasi-termination [7]) We say that a TRS R is quasi-terminating iff the set
{t | s −→∗

R t} is finite for every term s.

First, we naturally extend the notion of minimality to relative termination.

Definition 9 (relative DP problem) A relative DP problem is a triple of TRSs, written
(P,R/B). A (P,R/B)-chain is a possibly infinite sequence

s�
1

ε−→P t�1
>ε−→∗

R∪B s�
2

ε−→P t�2
>ε−→∗

R∪B · · ·

and is called minimal if every t�i is R/B-terminating. The relative DP problem is finite if it
admits no infinite minimal chain.

Clearly, finiteness of (DP(R),R/B) is equivalent to that of (DP(R),R ∪ B). Hence our
previous results hold as well for the corresponding relative DP problems.

6.1 Relative Subterm Criterion

The subterm criterion is applicable when the base B is quasi-terminating. More precisely,
we require that �/→B is terminating, i.e., there exist no infinite sequence of the following
form:

s1 � t1 →∗
B s2 � t2 →∗

B · · · (3)

Lemma 7 If B is quasi-terminating, then �/→B is terminating.

123

J. Iborra et al.

Proof We prove the claim by contradiction. Assume that there is an infinite sequence of form
(3). Since� is well-founded, the sequence must also contain infinitely many→B reductions.
We obtain an infinite sequence (note that � is transitive):

u1 � v1 →+
B u2 � v2 →+

B · · ·
By the definition of �, ui = Ci [vi] for some nonempty context Ci . We obtain the following
infinite →B sequence:

u1 = C1[v1] →+
B C1[u2] = C1[C2[v2]] →+

B · · ·
which yields infinitely many different B-reducts of u1. This contradicts the assumption that
B is quasi-terminating. ��

Now we introduce some notions which are needed to formally describe the subterm cri-
terion.

Definition 10 (simple projection) A simple projection π is amapping that assigns each n-ary
symbol f � one of its argument position i ∈ {1, . . . , n}. For a term t� = f �(t1, . . . , tn), we
denote by π(t�) the term ti with i = π(f �). For a relation � on terms, �π is defined as
follows: s �π t iff π(s) � π(t).

Theorem 3 (relative subterm criterion) Let (P,R/B) be a relative DP problem such that
�/→B is terminating, and let π be a simple projection such that P ⊆ �π . Then, (P,R/B)

is finite if (P \ �π ,R/B) is finite.

Proof We prove the claim by contradiction. Assume that there exists a minimal infinite chain
of the form:

t� >ε−→∗
R∪B s�

1
ε−→P t�1

>ε−→∗
R∪B s�

2
ε−→P t�2

>ε−→∗
R∪B · · ·

such that π(s�
i) � π(t�i) for infinitely many choices of i . Using the discussion in [13,

Theorem11], we obtain the following infinite sequence:

π(t�) →∗
R∪B π(s�

i1
) � π(t�i1) →∗

R∪B π(s�
i2
) � π(t�i2) →∗

R∪B · · · (4)

Since every proper subterm of t is R/B-terminating, so is π(t�). Moreover, � preserves the
termination property. Hence, the infinite sequence (4) cannot contain infinitely many →R
steps, and thus we obtain an infinite � · →∗

B sequence. This contradicts the assumption that
�/→B is terminating. ��
6.2 Relative Usable Rules

Now we prove that the quasi-termination condition also enables the usable rules technique.
We roughly follow the proof by Hirokawa and Middeldorp [15] for the non-relative case,
but in the following definition we introduce a trick to handle B-reductions, and use more
convenient notations.

Definition 11 Let R be a finite TRS, B a quasi-terminating TRS, and UF a set of function
symbols. For an R/B-terminating term s, we define s and ŝ as follows: s = ŝ = s if s is a
variable, and for s = f (s1, . . . , sn),

123

Relative Termination via Dependency Pairs

s =
{

f (s1, . . . , sn) if f ∈ UF
list({ t̂ | s →∗

B t }) if f /∈ UF

ŝ =
{

f (s1, . . . , sn) if f ∈ UF
list({ f (s1, . . . , sn)} ∪ { t | s →R t }) if f /∈ UF

Here, list({s1, . . . , sn}) denotes the term s1 ◦ · · · ◦ sn , where ◦ /∈ F is a fresh binary symbol
and elements are sorted w.r.t. an arbitrary but fixed total order on terms.

It is easy to see that s and ŝ are well defined for everyR/B-terminating s. Note also that s
is a finite term due to the assumption that B is quasi-terminating. To ease readability, the rest
of this section assumes R to be finite and B quasi-terminating, without explicitly stating it.

A key property of Definition 11 is that R- and B-reductions below a non UF symbol can
be simulated by the following TRS, which is traditionally called CE (w.r.t. ◦).

CE = { x ◦ y → x, x ◦ y → y }
Lemma 8 If s is R/B-terminating, s −→R∪B t , and root(s) /∈ UF , then s −→∗

CE t .

Proof First consider s −→B t . In this case, we have {u | s −→∗
B u} ⊇ {u | t −→∗

B u}. Hence,
by properly applying CE rules we obtain

s = list({̂u | s −→∗
B u}) −→∗

CE list({̂u | t −→∗
B u}) = t

Next consider s = f (s1, . . . , sn) −→R t . In this case, we have

s = list({̂u | s −→∗
B u}) −→∗

CE ŝ = list({ f (s1, . . . , sn)} ∪ {t | s −→R t}) −→∗
CE t

��
The following auxiliary result for substitutions is analogous to Hirokawa and Middeldorp

[15], but the proof needs a little modification for the distinction of s and ŝ. We say that a
substitution σ is R/B-terminating if xσ is R/B- terminating for every variable x . For an
R/B- terminating substitution σ , σ denotes the substitution that maps each x to xσ .

Lemma 9 If σ and sσ are R/B-terminating, then sσ −→∗
CE sσ . If moreover s ∈ T (UF ,V),

then sσ = sσ .

Proof We prove the claim by induction on the structure of s. If s ∈ V then trivially sσ = sσ .
Assume that s = f (s1, . . . , sn). We have

sσ = f (s1, . . . , sn)σ = f (s1σ, . . . , snσ)

Now, we consider the following two cases:

1. If f ∈ UF , then by definition sσ = f (s1σ, . . . , snσ).
2. If f /∈ UF , then we have

sσ = list({̂t | sσ −→∗
B t}) −→∗

CE ŝσ

= list({ f (s1σ , . . . , snσ)} ∪ {t | sσ −→R t}) −→∗
CE f (s1σ, . . . , snσ)

Using the induction hypotheses, we obtain

f (s1σ, . . . , snσ) −→∗
CE f (s1σ, . . . , snσ) = f (s1, . . . , sn)σ = sσ

Thus we conclude sσ −→∗
CE sσ . If s ∈ T (UF ,V), then case 2 does not occur and we obtain

sσ = sσ . ��

123

J. Iborra et al.

Now we define the notion of usable rules.

Definition 12 Let U ⊆ R ∪ B and UF ⊆ F . Elements in U (UF) are called usable rules
(usable symbols) in a relative DP problem (P,R/B), if the following conditions hold:

1. If l → r ∈ R ∪ B and root(l) ∈ UF , then l → r ∈ U .
2. If l → r ∈ U ∪ P , then r ∈ T (UF ,V).

Let us say that a position p in a term s is usable if root(s|q) ∈ UF for every proper prefix
q of p. The following lemma is straightforward, which is also a corollary of Hirokawa and
Middeldorp [15, Lemma 18].

Lemma 10 If p is a usable position in s and s[t]p is R/B-terminating, then s[t]p = s[t]p.

Lemma 11 Let U and UF satisfy the conditions of Definition 12. If s is R/B-terminating
and s −→R∪B t , then s −→∗

U∪CE t .

Proof Let s
p−→R∪B t , i.e., s|p = lσ and t = s[rσ]p for some l → r ∈ R ∪ B. We

distinguish the following two cases:

– Suppose that p has a usable prefix q such that root(s|q) /∈ UF . We have s|q −→R∪B t |q ,
and Lemma 8 entails s|q −→∗

CE t |q . Using Lemma 10, we get

s = s[s|q]q = s[s|q]q −→∗
CE s[t |q]q = s[t |q]q = t

– Otherwise, p is a usable position and root(l) ∈ UF . By condition 1 we have l → r ∈ U .
By Lemma 9, we have lσ −→∗

CE lσ . Further, we know r ∈ T (UF ,V) by condition 2 of
Definition 12. Hence, by Lemma 9, we have rσ = rσ . Finally, using Lemma 10, we
obtain

s = s[lσ]p = s[lσ]p −→∗
CE s[lσ]p −→U s[rσ]p = s[rσ]p = s[rσ]p = t

��
Finally, we present the main result of this section. Using the preceding lemmas, the main

theorem is proven analogously to the standard case.

Theorem 4 (relative usable rules) Let (P,R/B) be a relative DP problem such that R is
finite and B is quasi-terminating. Let U satisfy the conditions of Definition 12, and (�,�)

be a reduction pair such that P ∪ U ∪ CE ⊆ �. Then, (P,R/B) is finite if and only if the
relative DP problem (P \ �,R/B) is finite.

Proof The “only-if” direction is trivial. For the “if” direction, consider a minimal infinite
(P,R/B)-chain:

l�0σ0
ε−→P r�

0σ0 −→∗
R∪B l�1σ1

ε−→P r�
1σ1 −→∗

R∪B l�2σ2
ε−→P r�

2σ2 −→∗
R∪B · · · (5)

where l�i → r�
i ∈ P for every i = 0, 1, 2, · · · . The minimality assumption entails that r�

i σi is

R/B-terminating, and thus r�
i σi is defined.UsingLemma 11,we have r�

i σi −→∗
U∪CE l�i+1σi+1.

Since U ∪ CE ⊆ � and � is closed under contexts and substitutions, we obtain

l�1σ1
ε−→P r�

1σ1 � l�2σ2
ε−→P r�

2σ2 � · · ·

123

Relative Termination via Dependency Pairs

For i = 1, 2, . . . , we have l�i σi −→∗
CE l�i σi by Lemma 9. By condition 2 of Definition 12 we

know r�
i ∈ T (UF ,V) and hence r�

i σi = r�
i σi by Lemma 9. We obtain

l�1σ1
ε−→P r�

1σ1 � l�2σ2
ε−→P r�

2σ2 � · · ·
Since (�,�) is a reduction pair, we cannot have l�i � r�

i for infinitely many i . Thus,
after some point (5) contains no −→P∩� steps, which is a desired minimal infinite
(P \ �,R/B)-chain. ��

It is well known that, unfortunately, the quasi-termination condition is undecidable [7].
In our implementation, we only use a trivial sufficient condition, non- size increasingness.
We admit that this is quite restrictive, and thus leave it for future work to find a more useful
syntactic condition for this purpose.

From Example 8, it is clear that the usable rule argument does not apply to the rules in B
if they are not quasi-terminating. Nonetheless, we conjecture that the usable rule argument
may be still applicable to the rules in R.

7 Experimental Evaluation

We implemented our technique into the termination prover NaTT (since ver. 1.2). The imple-
mentation works as follows: It first checks if the rules in B satisfy the two conditions of
Theorem 2. If there is a rule that violates the conditions, then it moves the rule into B′, and
repeats the procedure until a partition satisfying the conditions of Corollary 3 is obtained.
Then it enables the usable rules technique6 if the remaining B rules are non-size increasing,
although it is not often the case for the present benchmarks.

Afterwards, we obtain a standard dependency pair problem, on which existing reduction
pair processors can be applied. In the experiments, we use the following reduction pairs for
Proposition 2:

– polynomial interpretations [2,26], extended for a limited form of negative coefficients
[14],

– the lexicographic path order [20] with argument filtering [2],
– the weighted path order with partial status [35], and
– (2- or 3-dimensional) matrix interpretations [8].

As monotone reduction pairs for Proposition 3, we use polynomial and matrix interpreta-
tions with top-left elements of coefficients being at least 1 [8].

In the following, we show the significance of our technique through an experimental
evaluation. The experiments were run on a server equipped with a quad-core Intel Xeon
E5-3407v2 processor running at a clock rate of 2.40GHz and 32GB of main memory.NaTT
uses z3 4.3.27 as a back-end SMT solver.

The first test set consists of the 44 examples in the “TRS Relative” category of the termi-
nation problem database (TPDB) 9.0.8 The results are presented in the left half of Table 1.
The “yes” column indicates the number of successful termination proofs, “maybe” indicates
the number of failures, “T.O.” indicates the number of timeouts, which is set to 60s, and

6 Unfortunately, the subterm criterion is not implemented in NaTT.
7 Available at https://github.com/Z3Prover/z3/.
8 Available at http://termination-portal.org/wiki/TPDB.

123

https://github.com/Z3Prover/z3/
http://termination-portal.org/wiki/TPDB

J. Iborra et al.

Table 1 Experiments

Method TPDB relative (44) AG01 + relative (44)

Yes Maybe T.O. Time Yes Maybe T.O. Time

Theorem 2 4 40 0 0.81 29 15 0 5.13

Corollary 3 6 28 0 37.87 29 15 0 5.05

Proposition 3 23 17 4 406.05 9 35 0 6.62

Prop. 3 + Cor. 3 25 11 8 505.52 35 9 0 13.03

AProVE 27 (no: 8) 9 756.66 14 0 30 1959.91

“time” indicates the total run time. In the first two rows, we directly apply Theorem 2 and
Corollary 3, and then apply the aforementioned reduction pairs. We observe that they are
of limited applicability on this set of problems due to the non-duplication and dominance
conditions. Nonetheless, Corollary 3 could prove the relative termination of two problems9

that no tools participating in the Termination Competition 2015 were able to prove. For com-
parison, we include results for rule removal processors by matrix interpretations in the third
row.

We also prepared 44 examples by extending benchmarks by Arts and Giesl [3] with
the random number generator Brand or the commutative list specification Bcomlist, which is
added to TPDB 10.0. The results are presented in the right half of Table 1. In these examples,
the power of our method should be clear. Theorem 2 is already able to prove the relative
termination of 29 examples, while AProVE succeeds only in 14 examples.

The DP framework allows the combination of termination proving techniques. In the
fourth row, we combine the rule removal processors and the technique presented in this
paper. This combination indeed boosts the power of NaTT; e.g., by combining Proposition 3
and Corollary 3, NaTT can prove relative termination for a total of 60 examples (out of
88), while AProVE can only prove it for 41 examples.10 Therefore, we conclude that our
technique improves the state-of-the-art methods for proving relative termination.

Although NaTT won the “TRS Relative” category in the Termination Competition 2015,
it is clear that the mostly artificially crafted 88 examples in the category are limited as a
fair benchmark set (especially compared to the “TRS Standard” category containing almost
1500 examples). We hope that new relative termination problems stemming from different
applications will alleviate this problem in the near future.

8 Related Work

One of the most comprehensive works on relative termination is Geser’s Ph.D. thesis [9].
Indeed, one of his main results is formulated in Proposition 3 of Sect. 2. A similar technique
has been used, e.g., to prove confluence in [16].Of course dependency pairs are not considered
in [9] since they were introduced almost a decade later. Dependency pairs are considered in
[8], but they are mainly used to prove termination of a TRS R by proving termination of
DP(R)/R, which is quite a different purpose from ours.

9 For one of the two problems, the union is terminating.
10 For four examples, AProVE proved relative termination but NaTT failed. In this cases, AProVE used
semantic labeling [36], which is currently not implemented in NaTT.

123

Relative Termination via Dependency Pairs

Giesl and Kapur [10] adapted the dependency pair method for proving termination of
equational rewriting, a special case of relative termination where the base is symmetric
(B = B−1). For more specific associative-commutative (AC) rewriting, a number of papers
exist ([1,25,27], etc.). The key technique behind them is to compute an extension of R
w.r.t. the considered equations. This operation allows symbols in B (e.g., AC symbols) to be
defined also inR, and hence no counterpart of the dominance condition is required. However,
such extensions are computable only for certain equations (e.g., AC), and thus they are not
appropriate in our setting, where an arbitrary base B is considered.

The closer approach is Iborra et al. [18], where the main aim was proving termination
of narrowing [17,31] by proving relative termination of a corresponding rewrite relation,
similarly to [29,33]. In [18], a first attempt to reduce relative termination to a DP problem
is made by requiring R and B to form a so-called hierarchical combination (HC) [30], i.e.,
DR∩FB = ∅. Unfortunately, we found that Iborra et al. [18, Theorem 5] was incorrect since
requiring B to be non-duplicating is also necessary. In fact, Example 4 is a counterexample
to Iborra et al. [18, Theorem 5]. The present paper corrects and significantly extends [18];
namely, all results in Sects. 3, 5, and 6 are new, and those in Sect. 4 correct and extend the
previous result of Iborra et al. [18]. Note also that the HC condition of Iborra et al. [18] is
a special case of our dominance condition. Moreover, we developed an implementation that
allowed us to experimentally verify that our technique indeed pays off in practice.

This paper is a revised and extended version of [19]. Besides addingmore explanations and
missing proofs (most notably in Sect. 6.2), we found and filled a gap in the original proofs. 11

To elegantly correct it, we now present Sect. 3 in a more essential way, and reformulate the
original claims in Sects. 4 and 5 accordingly. Moreover, we improved the claim of the main
result (Theorem 2) in order to show soundness and completeness (before only soundness was
considered).

9 Conclusion

In this paper, we have introduced a new approach to proving relative termination by reducing
it to DP problems. The relevance of such a result should be clear, since it allows one to prove
relative termination by reusing many existing techniques and tools for proving termination
within the DP framework. Indeed, such an approach was included in the RTA List of Open
Problems (Problem #106). To the best of our knowledge, this work makes the first significant
contribution to positively answering this problem.Moreover, as shown in Sect. 7, our method
is competitive w.r.t. state-of-the-art provers for the problems in the TPDB, and is clearly
superior for examples including the generation of random values or the simulation of extra-
variables, as discussed in Sect. 1.

As future work, we plan to improve the precision of our technique by extending the DP
framework to be more suitable for proving relative termination. We will also continue the
research on finding less restrictive conditions on R and B so that the technique becomes
more widely applicable.

Acknowledgments Open access funding provided byAustrian Science Fund (FWF).Wewould like to thank
NaoHirokawa, KeiichirouKusakari, and the anonymous reviewers for their helpful comments and suggestions
in early stages of this work.

11 In [19, Definition 3], �R/B should be defined as (→R/B · �)+ rather than (→R/B ∪ �)+. The

latter definition is not well-founded if →+
B ∩ � �= ∅. A straightforward correction would require a tedious

workaround to prove [19, Lemma 5].

123

J. Iborra et al.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A∨C-termination. In: WRLA
2010, LNCS, vol. 6381, pp. 36–52. Springer (2010)

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2),
133–178 (2000)

3. Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using dependency pairs.
Technical report AIB-2001-09, RWTH Aachen (2001)

4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)
5. Bachmair, L., Dershowitz, N.: Critical pair criteria for completion. J. Symb. Comput. 6, 1–18 (1988)
6. Bonacina, M., Hsiang, J.: On fairness of completion-based theorem proving strategies. In: RTA 1991,

LNCS, vol. 488, pp. 348–360. Springer (1991)
7. Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1&2), 69–115 (1987)
8. Endrullis, J.,Waldmann, J., Zantema, H.:Matrix interpretations for proving termination of term rewriting.

J. Autom. Reason. 40(2–3), 195–220 (2008)
9. Geser,A.:RelativeTermination.Dissertation, Fakultät fürMathematik und Informatik.Universität Passau,

Germany (1990)
10. Giesl, J., Kapur, D.: Dependency pairs for equational rewriting. In: RTA 2001, LNCS, vol. 2051, pp.

93–107. Springer (2001)
11. Giesl, J., Schneider-Kamp, P., Thiemann,R.:AProVE1.2: automatic termination proofs in the dependency

pair framework. In: IJCAR 2006, LNCS, vol. 4130, pp. 281–286. Springer (2006)
12. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency Pairs. J.

Autom. Reason. 37(3), 155–203 (2006)
13. Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: RTA 2004, LNCS, vol. 3091, pp. 249–268.

Springer (2004)
14. Hirokawa, N., Middeldorp, A.: Polynomial interpretations with negative coefficients. In: AISC 2004,

LNAI, vol. 3249, pp. 185–198. Springer (2004)
15. Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: techniques and features. Inf. Comput. 205(4),

474–511 (2007)
16. Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J. Autom. Reason. 47(4),

481–501 (2011)
17. Hullot, J.M.: Canonical forms and unification. In: CADE 1980, LNCS, vol. 87, pp. 318–334. Springer

(1980)
18. Iborra, J., Nishida, N., Vidal, G.: Goal-directed and relative dependency pairs for proving the termination

of narrowing. In: LOPSTR 2009, LNCS, vol. 6037, pp. 52–66. Springer (2010)
19. Iborra, J., Nishida, N., Vidal, G., Yamada, A.: Reducing relative termination to dependency pair problems.

In: CADE-25, LNAI, vol. 9195, pp. 163–178. Springer (2015)
20. Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering (1980). Unpublished note
21. Klop, J.W.: Term rewriting systems: a tutorial. Bull. Eur. Assoc. Theor. Comput. Sci. 32, 143–183 (1987)
22. Koprowski, A.: TPA: termination proved automatically. In: RTA 2006, LNCS, vol. 4098, pp. 257–266.

Springer (2006)
23. Koprowski, A., Zantema, H.: Proving liveness with fairness using rewriting. In: FroCoS 2005, LNCS,

vol. 3717, pp. 232–247. Springer (2005)
24. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: RTA 2009, LNCS,

vol. 5595, pp. 295–304. Springer (2009)
25. Kusakari, K., Toyama, Y.: On proving AC-termination by AC-dependency pairs. IEICE Trans. Inf. Syst.

E84–D(5), 439–447 (2001)
26. Lankford, D.: Canonical algebraic simplification in computational logic. Technical report ATP-25, Uni-

versity of Texas (1975)
27. Marché, C., Urbain, X.: Modular and incremental proofs of AC-termination. J. Symb. Comput. 38(1),

873–897 (2004)
28. Nishida, N., Sakai, M., Sakabe, T.: Narrowing-based simulation of term rewriting systems with extra

variables. ENTCS 86(3), 52–69 (2003)

123

http://creativecommons.org/licenses/by/4.0/

Relative Termination via Dependency Pairs

29. Nishida, N., Vidal, G.: Termination of narrowing via termination of rewriting. Appl. Algebra Eng. Com-
mun. Comput. 21(3), 177–225 (2010)

30. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, London (2002)
31. Slagle, J.: Automated theorem-proving for theories with simplifiers commutativity and associativity. J.

ACM 21(4), 622–642 (1974)
32. Thiemann, R., Allais, G., Nagele, J.: On the formalization of termination techniques based on multiset

orderings. In: RTA2012, LIPIcs, vol. 15, pp. 339–354. SchlossDagstuhl –Leibniz-Zentrum für Informatik
(2012)

33. Vidal, G.: Termination of narrowing in left-linear constructor systems. In: FLOPS 2008, LNCS, vol. 4989,
pp. 113–129. Springer (2008)

34. Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: RTA-TLCA 2014, LNCS, pp. 466–
475. Springer (2014)

35. Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving. Sci. Comput. Program.
111, 110–134 (2015)

36. Zantema, H.: Termination of term rewriting by semantic labelling. Fundam. Inf. 24(1/2), 89–105 (1995)
37. Zantema, H.: Termination. In: Bezem, M., Klop, J. W., de Vrijer, R. (eds.) Term Rewriting Systems,

Cambridge Tracts in Theoretical Computer Science, chap. 6, vol. 55, pp. 181–259. Cambridge University
Press, Cambridge (2003)

123

	Relative Termination via Dependency Pairs
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The Dependency Pair Framework
	2.2 Relative Termination

	3 Relative Termination as a Dependency Pair Problem
	4 Syntactic Conditions for Admitting a Proof Ordering
	5 Improving Applicability
	6 Relative Termination and Minimality
	6.1 Relative Subterm Criterion
	6.2 Relative Usable Rules

	7 Experimental Evaluation
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

