Termination of Narrowing in Left-Linear Constructor Systems

Germán Vidal

Technical University of Valencia, Spain

9th Int'l Symposium on Functional and Logic Programming FLOPS 2008

> April 14-16, 2008 Ise, Japan

Standard definition of addition (TRS)

$$\begin{array}{ccc} \mathsf{add}(\mathsf{z},y) & \to & y & (R_1) \\ \mathsf{add}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{add}(x,y)) & (R_2) \end{array}$$

With **rewriting**: $add(s(z), z) \rightarrow_{R_2} s(add(z, z)) \rightarrow_{R_1} s(z)$

With **narrowing**: $add(s(z), z) \rightsquigarrow_{R_2} s(add(z, z)) \rightsquigarrow_{R_1} s(z)$

(many other non-deterministic reductions possible...)

• • • • • • • • • • • • •

Standard definition of addition (TRS)

$$\begin{array}{ccc} \mathsf{add}(\mathsf{z},y) & \to & y & (R_1) \\ \mathsf{add}(\mathsf{s}(x),y) & \to & \mathsf{s}(\mathsf{add}(x,y)) & (R_2) \end{array} \right)$$

With rewriting: $add(s(z), z) \rightarrow_{R_2} s(add(z, z)) \rightarrow_{R_1} s(z)$

With **narrowing**: $add(s(z), z) \rightsquigarrow_{R_2} s(add(z, z)) \rightsquigarrow_{R_1} s(z)$

(many other non-deterministic reductions possible...)

Standard definition of addition (TRS)

With **rewriting**: $add(s(z), z) \rightarrow_{R_2} s(add(z, z)) \rightarrow_{R_1} s(z)$

With **narrowing**: $add(s(z), z) \rightsquigarrow_{R_2} s(add(z, z)) \rightsquigarrow_{R_1} s(z)$

(many other non-deterministic reductions possible...)

Standard definition of addition (TRS)

$$egin{array}{rcl} \mathsf{add}(\mathsf{z},y) & o & y & (R_1) \ \mathsf{add}(\mathsf{s}(x),y) & o & \mathsf{s}(\mathsf{add}(x,y)) & (R_2) \end{array} \end{array}$$

With rewriting: $add(s(z), z) \rightarrow_{R_2} s(add(z, z)) \rightarrow_{R_1} s(z)$

With **narrowing**: $add(s(z), z) \rightsquigarrow_{R_2} s(add(z, z)) \rightsquigarrow_{R_1} s(z)$

(many other non-deterministic reductions possible...)

Formal definition

Definition (rewriting)

$$(s \rightarrow_{p,R} s[r\sigma]_p)$$
 if there are

 $\left\{ \begin{array}{l} \bullet \text{ a position } p \text{ of } s \\ \bullet \text{ a rule } R = (l \rightarrow r) \text{ in } \mathcal{R} \end{array} \right.$

• a substitution
$$\sigma$$
 such that $s|_{\rho} = I\sigma$

₩

$\boxed{\text{Definition (narrowing)}}$ $\boxed{s \rightsquigarrow_{p,R,\sigma} (s[r]_p)\sigma} \text{ if there are } \begin{cases} \bullet \text{ a nonvariable position } p \text{ of } s \\ \bullet \text{ a variant } R = (l \rightarrow r) \text{ of a rule in } \mathcal{R} \\ \bullet \text{ a substitution } \sigma \text{ such that } s|_p\sigma = l\sigma \\ [\sigma = mgu(s|_p, l)] \end{cases}$

(日) (同) (三) (三)

Some motivation

We want to analyze the termination of narrowing

Why?

- narrowing is relevant in a number of areas: functional logic languages, partial evaluation, protocol verification, type inference, etc
- no termination prover for narrowing

We want to analyze the termination of narrowing by analyzing the termination of rewriting

Why?

• many techniques and tools for rewriting!

Main ideas

- replace logic variables by data generators
- analyze the termination of rewriting with data generators
- adapt direct and transformational approaches, ,

Some motivation

We want to analyze the termination of narrowing

Why?

- narrowing is relevant in a number of areas: functional logic languages, partial evaluation, protocol verification, type inference, etc
- no termination prover for narrowing

We want to analyze the termination of narrowing by analyzing the termination of rewriting $% \left({{{\mathbf{x}}_{i}} \right)$

Why?

• many techniques and tools for rewriting!

Main ideas

- replace logic variables by data generators
- analyze the termination of rewriting with data generators
- adapt direct and transformational approaches,

Some motivation

We want to analyze the termination of narrowing

Why?

- narrowing is relevant in a number of areas: functional logic languages, partial evaluation, protocol verification, type inference, etc
- no termination prover for narrowing

We want to analyze the termination of narrowing by analyzing the termination of rewriting $% \left({{{\mathbf{x}}_{i}} \right)$

Why?

• many techniques and tools for rewriting!

Main ideas

- replace logic variables by data generators
- analyze the termination of rewriting with data generators
- adapt direct and transformational approaches

Termination of narrowing

The termination problem

• given a TRS, are all possible narrowing derivations finite?

Too strong!

 $\operatorname{\mathsf{add}}(x,y) \sim_{R_2,\{x \mapsto \mathsf{s}(x')\}} \operatorname{\mathsf{add}}(x',y) \sim_{R_2,\{x' \mapsto \mathsf{s}(x'')\}} \cdots$

In this work

given a TRS *R* and a set of terms *T*, are all possible narrowing derivations t₁ → t₂ → ... for t₁ ∈ *T* finite? (in symbols: *T* is →_{*R*}-terminating)

For instance, $\{ \operatorname{add}(s,t) \mid s \text{ is ground } \}$ is $\rightsquigarrow_{\mathcal{R}}$ -terminating

Termination of narrowing

The termination problem

• given a TRS, are all possible narrowing derivations finite?

Too strong!

$\operatorname{\mathsf{add}}(x,y) \sim_{R_2,\{x \mapsto \mathsf{s}(x')\}} \operatorname{\mathsf{add}}(x',y) \sim_{R_2,\{x' \mapsto \mathsf{s}(x'')\}} \dots$

In this work

given a TRS *R* and a set of terms *T*, are all possible narrowing derivations t₁ → t₂ → ... for t₁ ∈ *T* finite? (in symbols: *T* is →_{*R*}-terminating)

For instance, $\{ \operatorname{add}(s,t) \mid s \text{ is ground } \}$ is $\rightsquigarrow_{\mathcal{R}}$ -terminating

< ロ > < 同 > < 三 > < 三

Termination of narrowing

The termination problem

• given a TRS, are all possible narrowing derivations finite?

Too strong!

 $\operatorname{\mathsf{add}}(x,y) \sim_{R_2,\{x \mapsto \mathsf{s}(x')\}} \operatorname{\mathsf{add}}(x',y) \sim_{R_2,\{x' \mapsto \mathsf{s}(x'')\}} \dots$

In this work

 given a TRS R and a set of terms T, are all possible narrowing derivations t₁ → t₂ → ... for t₁ ∈ T finite? (in symbols: T is →_R-terminating)

For instance, $\{ \operatorname{add}(s,t) \mid s \text{ is ground } \}$ is $\rightsquigarrow_{\mathcal{R}}$ -terminating

・ロン ・聞と ・ほと ・ほと

Termination of narrowing via termination of rewriting

We consider **left-linear constructor** TRSs:

$$\begin{array}{rcl} f_1(t_{11},\ldots,t_{1m_1}) & \to & r_1 \\ & & \ddots \\ f_n(t_{n1},\ldots,t_{nm_n}) & \to & r_n \end{array}$$

with

- $f_i(t_{i1}, \ldots, t_{in_i})$ linear (no multiple occurrences of the same variable)
- t_{i1}, \ldots, t_{in_i} constructor terms (no occurrence of f_1, \ldots, f_n)

Property variables are bound to (irreducible) constructor terms ↓
Our approach we can replace variables by "data generators" that only produce constructor terms

Data generators [Antoy, Hanus, 2006; de Dios-Castro, López-Fraguas 2006]

For every TRS \mathcal{R} , we define \mathcal{R}_{gen} as \mathcal{R} augmented with

$$gen \rightarrow c(gen, \dots, gen)$$

for all constructor $\mathsf{c}/n\in\mathcal{C},\ n\geqslant 0$

E.g., for $\mathcal{C}=\{z/0,s/1\},$ we have

$$\mathcal{R}_{\mathsf{gen}} = \mathcal{R} \cup \left\{ \begin{array}{ll} \mathsf{gen} & \rightarrow & \mathsf{z} \\ \mathsf{gen} & \rightarrow & \mathsf{s}(\mathsf{gen}) \end{array} \right\}$$

Some notation: $\hat{t} = t\sigma$, with $\sigma = \{x \mapsto \text{gen } | x \in \mathcal{V}ar(t)\}$

Theorem (correctness)

$$t \sim_{\mathcal{R}} \ldots \sim_{\mathcal{R}} t' \quad iff \quad \widehat{t} \rightarrow_{\mathcal{R}_{gen}} \ldots \rightarrow_{\mathcal{R}_{gen}} \widehat{t}$$

Germán Vidal (TU Valencia, Spain)

Data generators [Antoy, Hanus, 2006; de Dios-Castro, López-Fraguas 2006]

For every TRS \mathcal{R} , we define \mathcal{R}_{gen} as \mathcal{R} augmented with

$$gen \rightarrow c(gen, \dots, gen)$$

for all constructor $\mathsf{c}/n\in\mathcal{C},\ n\geqslant 0$

< □ > < ---->

E.g., for $\mathcal{C}=\{z/0,s/1\},$ we have

$$\mathcal{R}_{gen} = \mathcal{R} \cup \left\{ \begin{array}{ll} gen \ \rightarrow \ z \\ gen \ \rightarrow \ s(gen) \end{array} \right\}$$

Some notation: $\hat{t} = t\sigma$, with $\sigma = \{x \mapsto \text{gen} \mid x \in \mathcal{V}ar(t)\}$

Theorem (correctness)

$$t \sim_{\mathcal{R}} \ldots \sim_{\mathcal{R}} t'$$
 iff $\widehat{t} \rightarrow_{\mathcal{R}_{gen}} \ldots \rightarrow_{\mathcal{R}_{gen}} \widehat{t'}$

Germán Vidal (TU Valencia, Spain)

→ 3 → 4 3

What about termination in \mathcal{R}_{gen} ?

Clearly, no term with occurrences of gen terminates!

Fortunately, relative termination of \mathcal{R}_{gen} suffices:

T is relatively *R*_{gen}-terminating to *R* if every derivation *t*₁ → *t*₂... for *t*₁ ∈ *T* contains finitely many →_{*R*} steps

Theorem (termination of narrowing via termination of rewriting) Let \mathcal{R} be a left-linear constructor TRS T is $\sim_{\mathcal{R}}$ -terminating iff \widehat{T} is relatively $\rightarrow_{\mathcal{R}_{gen}}$ -terminating to \mathcal{R}

What about termination in \mathcal{R}_{gen} ?

Clearly, no term with occurrences of gen terminates!

Fortunately, relative termination of \mathcal{R}_{gen} suffices:

• T is relatively \mathcal{R}_{gen} -terminating to \mathcal{R} if every derivation $t_1 \rightarrow t_2 \dots$ for $t_1 \in T$ contains finitely many $\rightarrow_{\mathcal{R}}$ steps

```
Theorem (termination of narrowing via termination of rewriting)
Let \mathcal{R} be a left-linear constructor TRS
T is \sim_{\mathcal{R}}-terminating
iff
\widehat{T} is relatively \rightarrow_{\mathcal{R}_{gen}}-terminating to \mathcal{R}
```

What about termination in \mathcal{R}_{gen} ?

Clearly, no term with occurrences of gen terminates!

Fortunately, relative termination of \mathcal{R}_{gen} suffices:

• T is relatively \mathcal{R}_{gen} -terminating to \mathcal{R} if every derivation $t_1 \rightarrow t_2 \dots$ for $t_1 \in T$ contains finitely many $\rightarrow_{\mathcal{R}}$ steps

Theorem (termination of narrowing via termination of rewriting) Let \mathcal{R} be a left-linear constructor TRS T is $\sim_{\mathcal{R}}$ -terminating iff \widehat{T} is relatively $\rightarrow_{\mathcal{R}_{gen}}$ -terminating to \mathcal{R}

The problem

Given ${\mathcal R}$ and ${\mathcal T}$,

 \mathcal{T} is $\sim_{\mathcal{R}}$ -terminating if $\widehat{\mathcal{T}}$ is relatively $\rightarrow_{\mathcal{R}_{gen}}$ -terminating to \mathcal{R}

Drawback

• the set T is generally infinite

Solution: use abstract terms

- similar to modes in logic programming
- E.g., $\operatorname{add}(g, v)$ denotes the set of terms $\operatorname{add}(t_1, t_2)$ with
 - *t*₁ (definitely) ground
 - t₂ (possibly) variable
- concretization funcion γ ,

 $\mathsf{e.g.}, \gamma(\mathsf{add}(g, v)) = \{\mathsf{add}(\mathsf{z}, \mathsf{x}), \mathsf{add}(\mathsf{z}, \mathsf{z}), \mathsf{add}(\mathsf{s}(\mathsf{z}), \mathsf{x}), \mathsf{add}(\mathsf{s}(\mathsf{z}), \mathsf{z}), \ldots\}$

The problem

Given ${\mathcal R}$ and ${\mathcal T}$,

 \mathcal{T} is $\sim_{\mathcal{R}}$ -terminating if $\widehat{\mathcal{T}}$ is relatively $\rightarrow_{\mathcal{R}_{gen}}$ -terminating to \mathcal{R}

Drawback

• the set T is generally infinite

Solution: use abstract terms

- similar to modes in logic programming
- E.g., $\operatorname{add}(g, v)$ denotes the set of terms $\operatorname{add}(t_1, t_2)$ with
 - t1 (definitely) ground
 - t₂ (possibly) variable
- concretization funcion γ ,

e.g., $\gamma(\operatorname{add}(g, v)) = \{\operatorname{add}(z, x), \operatorname{add}(z, z), \operatorname{add}(s(z), x), \operatorname{add}(s(z), z), \ldots\}$

The problem

Given ${\mathcal R}$ and ${\mathcal T}$,

T is $\sim_{\mathcal{R}}$ -terminating if \widehat{T} is relatively $\rightarrow_{\mathcal{R}_{gen}}$ -terminating to \mathcal{R}

Drawback

• the set T is generally infinite

Solution: use abstract terms

- similar to modes in logic programming
- E.g., $\operatorname{add}(g, v)$ denotes the set of terms $\operatorname{add}(t_1, t_2)$ with
 - t_1 (definitely) ground
 - t₂ (possibly) variable
- concretization funcion γ ,

e.g., $\gamma(\operatorname{add}(g, \mathbf{v})) = \{\operatorname{add}(z, \mathbf{x}), \operatorname{add}(z, \mathbf{z}), \operatorname{add}(s(z), \mathbf{x}), \operatorname{add}(s(z), \mathbf{z}), \ldots\}$

The problem

Given \mathcal{R} and t^{α} , $\gamma(t^{\alpha})$ is $\sim_{\mathcal{R}}$ -terminating if $\widehat{\gamma(t^{\alpha})}$ is relatively $\rightarrow_{\mathcal{R}_{gen}}$ -terminating to \mathcal{R}

Drawback

• checking relative termination requires non-standard techniques

Solution: use argument filterings

 to filter away non-ground arguments of terms (equivalently, to filter away occurrences of gen)

< ∃ > <

The problem

Given \mathcal{R} and t^{α} , $\gamma(t^{\alpha})$ is $\rightsquigarrow_{\mathcal{R}}$ -terminating if $\widehat{\gamma(t^{\alpha})}$ is relatively $\rightarrow_{\mathcal{R}_{gen}}$ -terminating to \mathcal{R}

Drawback

• checking relative termination requires non-standard techniques

Solution: use argument filterings

 to filter away non-ground arguments of terms (equivalently, to filter away occurrences of gen)

< ∃ > <

The problem

Given \mathcal{R} and t^{α} , $\gamma(t^{\alpha})$ is $\rightsquigarrow_{\mathcal{R}}$ -terminating if $\widehat{\gamma(t^{\alpha})}$ is relatively $\rightarrow_{\mathcal{R}_{gen}}$ -terminating to \mathcal{R}

Drawback

• checking relative termination requires non-standard techniques

Solution: use argument filterings

 to filter away non-ground arguments of terms (equivalently, to filter away occurrences of gen)

< ∃ > <

Argument filterings [Kusakari, Nakamura, Toyama 1999]

 $ig(\pi(\mathsf{f})\subseteq\{1,\ldots,n\}$ for every defined function $\mathsf{f}/nig)$

Argument filterings over terms:

$$\pi(t) = \begin{cases} x & \text{if } t = x \\ c(\pi(t_1), \dots, \pi(t_n)) & \text{if } t = c(t_1, \dots, t_n) \\ f(\pi(t_{i_1}), \dots, \pi(t_{i_m})) & \text{if } t = f(t_1, \dots, t_n) \text{ and } \pi(f) = \{i_1, \dots, i_m\} \end{cases}$$

From
$$t^{\alpha}$$
 we infer a safe argument filtering π for t^{α}
• $\pi(t^{\alpha}) = f(g, g, ..., g)$
• for all $s \rightsquigarrow t$, if $\pi(s|_p)$ are ground then $\pi(t|_q)$ are ground too

Argument filterings [Kusakari, Nakamura, Toyama 1999]

 $ig(\pi(\mathsf{f})\subseteq\{1,\ldots,n\}$ for every defined function $\mathsf{f}/nig)$

Argument filterings over terms:

$$\pi(t) = \begin{cases} x & \text{if } t = x \\ c(\pi(t_1), \dots, \pi(t_n)) & \text{if } t = c(t_1, \dots, t_n) \\ f(\pi(t_{i_1}), \dots, \pi(t_{i_m})) & \text{if } t = f(t_1, \dots, t_n) \text{ and } \pi(f) = \{i_1, \dots, i_m\} \end{cases}$$

From t^{α} we infer a safe argument filtering π for t^{α} • $\pi(t^{\alpha}) = f(g, g, ..., g)$ • for all $s \rightsquigarrow t$, if $\pi(s|_p)$ are ground then $\pi(t|_q)$ are ground too

Proving termination automatically: approaches

A direct approach

- based on dependency pairs [Arts, Giesl 2000]
- only a slight extension needed

A transformational approach

- based on argument filtering transformation [Kusakari, Nakamura, Toyama 1999]
- no significant extension required

a direct approach to termination analysis

Dependency pairs approach: differences

Definition (chain)

A (possibly infinite) sequence of dependency pairs $s_1 \rightarrow t_1$, $s_2 \rightarrow t_2$,... from $DP(\mathcal{R})$ is a $(DP(\mathcal{R}), \mathcal{R}, \pi)$ -chain if

- \exists (constructor) substitution σ such that $\widehat{t_i\sigma} \rightarrow^*_{\mathcal{R}_{een}} \widehat{s_{i+1}\sigma}$ for $i \ge 1$
- $\pi(\widehat{s_i\sigma}), \pi(\widehat{t_i\sigma})$ contain no occurrences of gen

Three main extensions w.r.t. the standard notion:

- it is parameterized by π
- \bullet variables are replaced by gen and reductions w.r.t. \mathcal{R}_{gen}
- π should filter away all occurrences of gen

Theorem

Let π be a safe argument filtering for t^{α} in \mathcal{R} If there is no infinite $(DP(\mathcal{R}), \mathcal{R}, \pi)$ -chain, then $\gamma(t^{\alpha})$ is $\rightsquigarrow_{\mathcal{R}}$ -terminating

Germán Vidal (TU Valencia, Spain)

Dependency pairs approach: differences

Definition (chain)

A (possibly infinite) sequence of dependency pairs $s_1 \rightarrow t_1$, $s_2 \rightarrow t_2$,... from $DP(\mathcal{R})$ is a $(DP(\mathcal{R}), \mathcal{R}, \pi)$ -chain if

- \exists (constructor) substitution σ such that $\widehat{t_i\sigma} \to^*_{\mathcal{R}_{\text{ren}}} \widehat{s_{i+1}\sigma}$ for $i \ge 1$
- $\pi(\widehat{s_i\sigma}), \pi(\widehat{t_i\sigma})$ contain no occurrences of gen

Three main extensions w.r.t. the standard notion:

- it is parameterized by π
- \bullet variables are replaced by gen and reductions w.r.t. \mathcal{R}_{gen}
- π should filter away all occurrences of gen

Theorem

Let π be a safe argument filtering for t^{α} in \mathcal{R} If there is no infinite $(DP(\mathcal{R}), \mathcal{R}, \pi)$ -chain, then $\gamma(t^{\alpha})$ is $\rightsquigarrow_{\mathcal{R}}$ -terminating

Dependency pairs approach: differences

Definition (chain)

A (possibly infinite) sequence of dependency pairs $s_1 \rightarrow t_1$, $s_2 \rightarrow t_2$,... from $DP(\mathcal{R})$ is a $(DP(\mathcal{R}), \mathcal{R}, \pi)$ -chain if

- \exists (constructor) substitution σ such that $\widehat{t_i\sigma} \to^*_{\mathcal{R}_{een}} \widehat{s_{i+1}\sigma}$ for $i \ge 1$
- $\pi(\widehat{s_i\sigma}), \pi(\widehat{t_i\sigma})$ contain no occurrences of gen

Three main extensions w.r.t. the standard notion:

- it is parameterized by π
- \bullet variables are replaced by gen and reductions w.r.t. \mathcal{R}_{gen}
- π should filter away all occurrences of gen

Theorem

Let π be a safe argument filtering for t^{α} in \mathcal{R} If there is no infinite $(DP(\mathcal{R}), \mathcal{R}, \pi)$ -chain, then $\gamma(t^{\alpha})$ is $\rightsquigarrow_{\mathcal{R}}$ -terminating

Germán Vidal (TU Valencia, Spain)

A transformational approach

Our aim

- \bullet transform the original TRS ${\cal R}$ into a new TRS ${\cal R}'$
- narrowing terminates in ${\mathcal R}$ if rewriting terminates in ${\mathcal R}'$

Our transformation is a simplification of the *argument filtering transformation* (AFT) of [Kusakari, Nakamura, Toyama 1999]

Theorem

Let π be a safe argument filtering for t^{α} in \mathcal{R} $\gamma(t^{\alpha})$ is $\rightsquigarrow_{\mathcal{R}}$ -terminating if $\mathsf{AFT}_{\pi}(\mathcal{R})$ is terminating

 AFT_π(R) can be analyzed using standard techniques and tools for proving the termination of TRSs

(no data generator is involved in the derivations of $\mathsf{AFT}_\pi(\mathcal{R})$)

A transformational approach

Our aim

- \bullet transform the original TRS ${\cal R}$ into a new TRS ${\cal R}'$
- narrowing terminates in ${\mathcal R}$ if rewriting terminates in ${\mathcal R}'$

Our transformation is a simplification of the *argument filtering transformation* (AFT) of [Kusakari, Nakamura, Toyama 1999]

Theorem

Let π be a safe argument filtering for t^{α} in \mathcal{R} $\gamma(t^{\alpha})$ is $\rightsquigarrow_{\mathcal{R}}$ -terminating if $\mathsf{AFT}_{\pi}(\mathcal{R})$ is terminating

 AFT_π(R) can be analyzed using standard techniques and tools for proving the termination of TRSs

(no data generator is involved in the derivations of $\mathsf{AFT}_{\pi}(\mathcal{R})$)

Example

$$append(nil, y) \rightarrow y$$

 $append(cons(x, xs), y) \rightarrow cons(x, append(xs, y))$
 $reverse(nil) \rightarrow nil$
 $reverse(cons(x, xs)) \rightarrow append(reverse(xs), cons(x, nil))$

$$t^{lpha} = \operatorname{append}(g, v)$$

 $\pi = \{\operatorname{append} \mapsto \{1\}, \text{ reverse} \mapsto \{1\}\}$ (π is safe for t^{lpha})

The transformation $AFT_{\pi}(\mathcal{R})$ returns

$$\begin{array}{l} \operatorname{append(nil)} \to y & (y \text{ is an extra variable}) \\ \operatorname{append(cons}(x, xs)) \to \operatorname{cons}(x, \operatorname{append}(xs)) \\ \operatorname{reverse(nil)} \to \operatorname{nil} \\ \operatorname{reverse(cons}(x, xs)) \to \operatorname{append(reverse}(xs)) \end{array}$$

which is clearly not terminating

Example

$$append(nil, y) \rightarrow y$$

 $append(cons(x, xs), y) \rightarrow cons(x, append(xs, y))$
 $reverse(nil) \rightarrow nil$
 $reverse(cons(x, xs)) \rightarrow append(reverse(xs), cons(x, nil))$

$$t^{lpha} = \operatorname{append}(g, v)$$

 $\pi = \{\operatorname{append} \mapsto \{1\}, \text{ reverse} \mapsto \{1\}\}$ (π is safe for t^{lpha})

The transformation $AFT_{\pi}(\mathcal{R})$ returns

$$\begin{array}{l} \operatorname{append(nil)} \to \not \to & (\perp \text{ is a fresh constant}) \\ \operatorname{append(cons}(x, xs)) \to \operatorname{cons}(x, \operatorname{append}(xs)) \\ \operatorname{reverse(nil)} \to \operatorname{nil} \\ \operatorname{reverse(cons}(x, xs)) \to \operatorname{append(reverse(xs))} \end{array}$$

which is clearly not terminating

The termination tool TNT

It takes as input

- a left-linear constructor TRS
- an abstract term

and proceeds as follows:

- infers a safe argument filtering for the abstract term (a binding-time analysis)
- returns a transformed TRS using AFT_{π}

Website: http://german.dsic.upv.es/filtering.html

The termination of the transformed TRS can be checked with APROVE

Conclusions

Conclusions

- new techniques for proving the termination of narrowing in left-linear constructor systems
- good potential for reusing existing techniques and tools for rewriting
- first tool for proving the termination of narrowing

Future work

- extension to deal with extra-variables
- application to (offline) partial evaluation

Related work

Schneider-Kamp *et al* [SKGST07] presented an automated termination analysis for logic programs:

- logic programs are first translated to TRSs
- logic variables are simulated by infinite terms

Main differences:

- data generators (reuse of results relating narrowing and rewriting)
- no transformational approach in [SKGST07]

Nishida and Miura [NM06] adapted the dependency pair method for proving the termination of narrowing:

- direct approach (not based on using generators & rewriting)
- allow extra variables in TRSs
- not comparable

S. Antoy and M. Hanus.

Compiling Multi-Paradigm Declarative Programs into Prolog. In Proc. of the Int'l Workshop on Frontiers of Combining Systems (FroCoS'2000), pages 171–185. Springer LNCS 1794, 2000.

S. Antoy and M. Hanus.

Overlapping Rules and Logic Variables in Functional Logic Programs. In *Proc. of the 22snd Int'l Conf. on Logic Programming (ICLP'06)*, pages 87–101. Springer LNCS 4079, 2006.

G. Arroyo, J.G. Ramos, J. Silva, and G. Vidal. Improving Offline Narrowing-Driven Partial Evaluation using Size-Change Graphs.

In Proc. of LOPSTR'06, pages 60–76. Springer LNCS 4407, 2007.

J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and Improving Dependency Pairs. *Journal of Automated Reasoning*, 37(3):155–203, 2006.

K. Kusakari, M. Nakamura, and Y. Toyama.

Argument Filtering Transformation.

In Proc. of PPDP'99, pages 48-62. Springer LNCS 1702, 1999.

N. Nishida and K. Miura.

Dependency Graph Method for Proving Termination of Narrowing. In *Proc. of WST'06*, pages 12–16, 2006.

J.G. Ramos, J. Silva, and G. Vidal.

Fast Narrowing-Driven Partial Evaluation for Inductively Sequential Systems.

In Proc. of the 10th ACM SIGPLAN Int'l Conf. on Functional Programming (ICFP'05), pages 228–239. ACM Press, 2005.

 P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated Termination Analysis for Logic Programs by Term Rewriting.
 In Proc. of LOPSTR'06, pages 177–193. Springer LNCS 4407, 2007.