
Reversible Debugging of Erlang Programs in CauDEr∗

Ivan Lanese
Olas Team, University of Bologna/INRIA

Bologna, Italy
ivan.lanese@unibo.it

Germán Vidal
Universitat Politècnica de València

Valencia, Spain
gvidal@dsic.upv.es

Abstract
This talk presents the notion of causal-consistent reversible debug-
ging and its instance on Erlang provided by CauDEr. Reversible
debugging allows us to explore an execution back and forth looking
for a bug. Causal-consistent debugging tailors this approach to
concurrent systems so that actions can be undone in any order as
long as their consequences, if any, are undone first.

CCS Concepts
• Computing methodologies → Concurrent programming
languages; • Software and its engineering→ Concurrent pro-
gramming languages; Software testing and debugging.

Keywords
Reversible computing, Debugging, Concurrency
ACM Reference Format:
Ivan Lanese and Germán Vidal. 2024. Reversible Debugging of Erlang Pro-
grams in CauDEr. In Proceedings of the 2nd ACM International Workshop on
Future Debugging Techniques (DEBT ’24), September 19, 2024, Vienna, Austria.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3678720.3685319

1 Introduction
Reversible debugging allows us to explore an execution back and
forth looking for a bug causing a visible misbehavior. Going back-
wards in a sequential computation amounts to undo the actions
of a standard (forward) execution in reverse order. In the case of
concurrent programs, this approach may lead to explore an exe-
cution taking into account which processes were executed at a
given point in time—which depends on scheduling policies and
the speed of processors and cores, and provides few clues about
which processes to consider when looking for a bug. Here, we con-
sider causal-consistent reversible debugging [5], which allows us to
leverage information on causal dependencies between processes
for debugging. In particular, it allows one to explore the tree of
causes of a visible misbehavior when looking for a bug, disregard-
ing unrelated processes that just happened to be executed in the
same time interval.
∗This work has been partially supported by MSCA-PF project 101106046 - ReGraDe-CS,
by Generalitat Valenciana under grant CIPROM/2022/6 (FassLow), and by MCIN/AEI/
10.13039/501100011033 under grant PID2019-104735RB-C41.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DEBT ’24, September 19, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1110-7/24/09
https://doi.org/10.1145/3678720.3685319

2 Causal-Consistent Debugging
Nowadays, most of the software is concurrent (and frequently dis-
tributed) with many processes interacting to reach some common
goal. This makes debugging harder for many reasons. First of all, a
bug may become visible only in some particular execution, origi-
nating from a specific interleaving among the actions of different
processes. Replicating the execution that produced the misbehavior
can be very difficult or even impossible in practice. Second, the
bug may not be in the same process showing a misbehavior, but
actually in a different one that interacted wrongly with the one
showcasing the misbehavior. These difficulties make debugging
concurrent software particularly hard.

Standard debuggers allow one to run a program, possibly step-
by-step, or till some breakpoint, while inspecting the state to un-
derstand whether anything is wrong. The standard debugging tech-
nique consists in guessing the area of the program where the bug
might be, adding a breakpoint just before, and then executing the
program step-by-step from this breakpoint while looking for the
bug. This approach depends critically on the correctness of the
guess: if the bug is much further ahead, a tedious step-by-step exe-
cution is necessary (or just to continue to a later breakpoint). If the
bug precedes the breakpoint, part of the state will already be wrong
and one needs to restart execution including an earlier breakpoint.

In the case of concurrent systems, further problems arise. First,
restarting the execution with an earlier breakpoint may result in a
different interleaving, perhaps missing the misbehavior and making
it impossible to find the bug. Second, if there are many processes, it
can be very complex to determine which process may contain the
bug and should thus be analyzed.

A key observation here is that the execution of the bug precedes
and indeed causes the visible misbehavior, while possibly being
in a different process. Reversibility exploits the first part of the
observation: one can execute the program till the visible misbe-
havior occurs, and then execute it backward looking for the bug.
This avoids the need to guess where the bug is typical of standard
debugging.

Danos and Krivine showed [3] that in concurrent systems exe-
cuting forward actions in reverse order may be impossible—many
actions can occur at the same time, hence no total order may exist—
and it is in general meaningless. Indeed, concurrent actions may
occur in a given order even if they are unrelated. To solve these
issues, Danos and Krivine proposed causal-consistent reversibility,
which prescribes that any action can be undone provided that its
consequences, if any, are undone beforehand.

As shown in [5], this approach is suitable for debugging, since it
allows one to focus on a process of interest, e.g., the one showing the
misbehavior, as well as the ones that interact with it, disregarding
independent processes that just happened to be executed in the
same time interval. A further step taken in [5] is to leverage the

30

https://orcid.org/0000-0003-2527-9995
https://orcid.org/0000-0002-1857-6951
https://doi.org/10.1145/3678720.3685319
https://doi.org/10.1145/3678720.3685319


DEBT ’24, September 19, 2024, Vienna, Austria Ivan Lanese and Germán Vidal

Figure 1: CauDEr screenshot

rollback operator in [8] for debugging. This operator allows one to
undo an action (possibly far in the past) together with all and only its
consequences. It can also be defined as the execution of the shortest
sequence of backward causal-consistent steps undoing the target
action. Rollbacks can be exploited in debugging as follows. When
one spots a wrong behavior, say a wrong value of some variable 𝑥 ,
(s)he can ask to undo its immediate cause: the last assignment to 𝑥 .
Either this operation leads to a wrong line of code—the bug one is
looking for—or to a correct line of code that takes a wrong value
from previous instructions, e.g., 𝑥 = 𝑦 + 1, which is correct but 𝑦
has a wrong value as well. In this last case, one needs to iterate
the procedure till the bug is found. This approach allows one to
navigate the tree of causes of the misbehavior, which includes the
bug, possibly inspecting different processes. Indeed, if for instance
the wrong value assigned to 𝑥 comes from a message, one can undo
the sending of this message, which might be an action of a different
process. Notably, unrelated processes are never considered.

3 Debugging Erlang Programs
The approach above is language agnostic, while however collaps-
ing on standard reversible debugging for sequential languages. To
make the theory concrete, it has been applied to the functional and
concurrent language Erlang. This language has a clean concurrency
model based on actors and has been applied in a number of relevant
software projects worldwide [2]. The result of this line of work has
materialized in CauDEr [1, 6, 9], a reversible debugger for Erlang.
It implements the causal-consistent reversible semantics described
above by means of an instrumented interpreter for the language
(no native features of the Erlang/OTP environment are used).

A screenshot of CauDEr is shown in Fig. 1. The top-left presents
the code under analysis. The top-right provides several debugging
commands to control the execution. In particular, it currently shows
the rollback tab, allowing to trigger the rollback of relevant actions
like, e.g., a variable definition (since Erlang is functional, variables

can only be assigned once). The bottom part provides various in-
formation on the state. Beyond the usual ones, CauDEr presents
a history of each process describing past actions that can be used
as targets for rollbacks. It also shows the roll log, which describes
which actions have been actually undone due to the last rollback.
This is particularly useful for spotting spurious or missing causal
dependencies. For instance, if one rolls back an action of some
process that was in a mutual exclusion region, and as a result no
action of the process currently in the mutual exclusion region is
undone, it means that mutual exclusion is not enforced properly.

Finally, CauDEr can take the trace of a (buggy) execution as
input, obtained through the instrumentation of the source code. In
this way, one can replay a particular execution—or any causally
equivalent one—in the debugger, exploring it back and forth, thus
solving the problem of replicability mentioned before [10].

4 Concluding Remarks
We have presented causal-consistent reversible debugging and
its concrete instance provided by CauDEr. While the approach
is promising, CauDEr is still a prototype supporting only the core
features of the language (including higher-order functions, process
spawning, message sending and receiving, and a few built-ins).
Extending it to cover the full language and its libraries is time-
consuming, and not trivial either. Indeed, it requires one to define
a causal semantics of the full language, understand which informa-
tion must be saved to enable reversibility, and ensure that actions
are undone only after their consequences have been undone. This
proved to be not trivial in the case of distribution [4] and of imper-
ative primitives [7]. Another interesting line of research involves
formalizing and implementing an extension of CauDEr in order to
also show message races, following the approach in [11].

References
[1] CauDEr 2024. CauDEr repository. Available at https://github.com/mistupv/

cauder.
[2] F. Cesarini. 2019. Which companies are using Erlang, and why? URL: https:

//erlang-solutions.com/blog/which-companies-are-using-erlang-and-why.
[3] V. Danos and J. Krivine. 2004. Reversible communicating systems. In CONCUR

(LNCS, Vol. 3170). Springer, 292–307. https://doi.org/10.1007/978-3-540-28644-
8_19

[4] G. Fabbretti, I. Lanese, and J.-B. Stefani. 2021. Causal-Consistent Debugging
of Distributed Erlang Programs. In Reversible Computation (LNCS, Vol. 12805).
Springer, 79–95. https://doi.org/10.1007/978-3-030-79837-6_5

[5] E. Giachino, I. Lanese, and C.A. Mezzina. 2014. Causal-Consistent Reversible
Debugging. In FASE (LNCS, Vol. 8411). Springer, 370–384. https://doi.org/10.1007/
978-3-642-54804-8_26

[6] J.J. González-Abril and G. Vidal. 2021. Causal-Consistent Reversible Debugging:
Improving CauDEr. In PADL (LNCS, Vol. 12548). Springer, 145–160. https://doi.
org/10.1007/978-3-030-67438-0_9

[7] P. Lami, I. Lanese, J.-B. Stefani, C. Sacerdoti Coen, and G. Fabbretti. 2024. Re-
versible debugging of concurrent Erlang programs: Supporting imperative primi-
tives. Journal of Logical and Algebraic Methods in Programming 138 (2024), 100944.
https://doi.org/10.1016/j.jlamp.2024.100944

[8] I. Lanese, C. A. Mezzina, A. Schmitt, and J.-B. Stefani. 2011. Controlling Re-
versibility in Higher-Order Pi. In CONCUR (LNCS, Vol. 6901). Springer, 297–311.
https://doi.org/10.1007/978-3-642-23217-6_20

[9] I. Lanese, N. Nishida, A. Palacios, andG. Vidal. 2018. CauDEr: ACausal-Consistent
Reversible Debugger for Erlang. In FLOPS (LNCS, Vol. 10818). Springer, 247–263.
https://doi.org/10.1007/978-3-319-90686-7_16

[10] I. Lanese, A. Palacios, and G. Vidal. 2021. Causal-Consistent Replay Reversible
Semantics for Message Passing Concurrent Programs. Fundam. Informaticae 178,
3 (2021), 229–266. https://doi.org/10.3233/FI-2021-2005

[11] G. Vidal. 2022. Computing Race Variants in Message-Passing Concurrent Pro-
grammingwith Selective Receives. In FORTE (LNCS, Vol. 13273). Springer, 188–207.
https://doi.org/10.1007/978-3-031-08679-3_12

31

https://github.com/mistupv/cauder
https://github.com/mistupv/cauder
https://erlang-solutions.com/blog/which-companies-are-using-erlang-and-why
https://erlang-solutions.com/blog/which-companies-are-using-erlang-and-why
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/978-3-030-79837-6_5
https://doi.org/10.1007/978-3-642-54804-8_26
https://doi.org/10.1007/978-3-642-54804-8_26
https://doi.org/10.1007/978-3-030-67438-0_9
https://doi.org/10.1007/978-3-030-67438-0_9
https://doi.org/10.1016/j.jlamp.2024.100944
https://doi.org/10.1007/978-3-642-23217-6_20
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.3233/FI-2021-2005
https://doi.org/10.1007/978-3-031-08679-3_12

	Abstract
	1 Introduction
	2 Causal-Consistent Debugging
	3 Debugging Erlang Programs
	4 Concluding Remarks
	References

