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Abstract

The search space of SLD resolution, usually represented by means of a so-
called SLD tree, is often infinite. However, there are many applications that
must deal with possibly infinite SLD trees, like partial evaluation or some
static analyses. In this context, being able to construct a finite representation
of an infinite SLD tree becomes useful.

In this work, we introduce a framework to construct a finite data struc-
ture representing the (possibly infinite) SLD derivations for a goal. This
data structure, called closed SLD tree, is built using four basic operations:
unfolding, flattening, splitting, and subsumption. We prove some basic prop-
erties for closed SLD trees, namely that both computed answers and calls are
preserved. We present a couple of simple strategies for constructing closed
SLD trees with different levels of abstraction, together with some examples
of its application. Finally, we illustrate the viability of our approach by
introducing a test case generator based on exploring closed SLD trees.
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1. Introduction

In the context of logic programming, partial evaluation (also known as
partial deduction [25]) is a well known technique to specialize programs.
Intuitively speaking, given a logic program P and a finite set of atoms
A = {a1, . . . , an}, one should construct finite—possibly incomplete—SLD
trees for the atomic goals← a1, . . . ,← an, such that every leaf in these trees
is either successful, a failure, or only contains atoms that are instances of
{a1, . . . , an}. This condition, called closedness condition [25], ensures that
the computed trees are self-contained, which in turn guarantees the correct-
ness of the approach.

In this work, we aim at generalizing this idea by introducing a general
framework to construct finite representations of (possibly infinite) SLD trees,
so that they can also be used in other contexts. Indeed, there are many
problems in computer science that require dealing with (a finite represen-
tation of) an infinite search space. Besides partial evaluation, static anal-
yses and model checking techniques, for instance, aim at exploring all pos-
sible computations starting from a goal or from a class of goals, some of
which are usually infinite. Furthermore, there are many approaches (see,
e.g., [1, 2, 3, 9, 8, 15, 16, 27, 29, 38]) that advocate a transformational ap-
proach in which a program with imperative, object-oriented or concurrent
features—which are often difficult to analyze—are compiled into a simpler,
rule-based intermediate language (usually ignoring some details or abstract-
ing away some features), where rigorous program analyses can be defined
and implemented in a simpler way. One of the most popular such rule-based
languages is Prolog. Therefore, our framework may contribute to the use of
Prolog as a target language within the above transformational approach to
program analysis.

In particular, we introduce an extension of standard SLD trees that are
built using four basic operations: unfolding (based on SLD resolution), flat-
tening (i.e., generalizing some atoms in a goal), splitting (i.e., partitioning a
goal into a number of subgoals that are then evaluated independently) and
subsumption (a sort of memoization). When all the leaves of the tree are
either successful, a failure or a subsumed goal, we speak of a closed SLD tree.
Besides formalizing this notion, our main contributions are the following:

• Given a program and a goal, we show that a closed SLD tree can
always be constructed using an appropriate strategy. Here, we present
a couple of strategies that produce closed SLD trees with different levels
of abstraction.

• We prove that the computed answers of a standard (possibly infinite)
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SLD tree and those of an associated closed SLD tree (no matter the
considered strategy) are the same. Thus, the abstraction involved in
producing closed SLD trees does not affect the computed answers rep-
resented by the tree.

• We also prove that, for every call in a standard SLD tree, there is a
(possibly more general) call in any associated closed SLD tree. This
property guarantees the usefulness of closed SLD trees for those pro-
gram analysis where computing (an approximation of) the call patterns
of a goal is required.

• Then, we show how the success set of a closed SLD tree can be repre-
sented in a compact way by means of equations. This might be useful,
e.g., for program comprehension.

• Finally, we illustrate the viability of our approach by introducing a fully
automatic test case generator based on exploring closed SLD trees.

This paper is organized as follows. After some preliminaries, Section 3 intro-
duces the basic operations involved in the construction of closed SLD trees
and states a number of properties for them. Specific strategies for construct-
ing closed SLD trees are introduced and illustrated by means of examples
in Section 4. In Section 5, the design of a test case generator is introduced.
Finally, Section 6 discusses some related work and Section 7 concludes and
points out some directions for further research.

2. Preliminaries

In this section, we briefly present some basic notions from logic program-
ming; we refer the interested reader to [24] for a detailed introduction to this
paradigm.

We consider a first-order language with a fixed vocabulary of predicate
symbols, function symbols, and variables denoted by Π, F , and V , respec-
tively. We let T (F ,V) denote the set of terms constructed using symbols
from F and variables from V . An atom has the form p(t1, . . . , tn) with
p/n ∈ Π and ti ∈ T (F ,V) for i = 1, . . . , n. A definite clause has the form
head← body, where head is an atom and body ≡ (a1 ∧ · · · ∧ an) is a goal1 (a
conjunction of atoms); the empty goal is denoted by true. We usually denote
goals with capital letters (e.g., G,C, . . .) and atoms with small letters (e.g.,

1We use “≡” to denote the identity on syntactic objects, and identify goals with (pos-
sibly empty) conjunctions of atoms.
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a, b, . . .). A definite program is a finite set of definite clauses. In the follow-
ing, we focus on definite programs and will refer to them just as programs
(analogously to clauses and goals). Var(s) denotes the set of variables in the
syntactic object s.

Substitutions and their operations are defined as usual. In particular,
a substitution {x1 7→ t1, . . . , xn 7→ tn} denotes a (partial) mapping σ such
that σ(x) = ti if x = xi, i = 1, . . . , n, and σ(x) = x otherwise. The set
Dom(σ) = {x ∈ V | σ(x) 6= x} is called the domain of a substitution σ. The
empty substitution is denoted by id. A substitution σ is idempotent if σ =
σ · σ, where “·” denotes the standard composition operator on substitutions.
The restriction θ |̀V of a substitution θ to a set of variables V is defined as
follows: xθ |̀V = xθ if x ∈ V , and xθ |̀V = x otherwise. We say that θ = σ [V ]
if θ |̀V = σ |̀V . This notation is extended to sets of substitutions in the natural
way: Θ1 = Θ2 [V ] implies that there is a substitution θ1 ∈ Θ1 iff there
is a substitution θ2 ∈ Θ2 such that θ1 = θ2 [V ]. A syntactic object s1 is
more general than a syntactic object s2, denoted s1 ≤ s2, if there exists
a substitution θ such that s2 = s1θ. A substitution θ is a unifier of two
syntactic objects t1 and t2 iff t1θ = t2θ; furthermore, θ is the most general
unifier of t1 and t2, denoted by mgu(t1 = t2) if, for every other unifier σ of
t1 and t2, we have that θ ≤ σ. The mgu operator is naturally extended to
a conjunction of equations. A variable renaming is a substitution that is a
bijection on V . Two syntactic objects t1 and t2 are variants (or equal up to
variable renaming), denoted t1 ≈ t2, if t1 = t2ρ for some variable renaming
ρ.

Computations in logic programming are formalized by means of SLD
resolution. The notion of computation rule R is used to select an atom within
a goal for its evaluation. Given a program P , a goal G ≡ (a1 ∧ · · · ∧ an),
and a computation rule R, we say that G ;P,R,σ G

′ is an SLD resolution
step for G with P and R if R(G) = ai, 1 ≤ i ≤ n, is the selected atom,
h← b1 ∧ · · · ∧ bm is a renamed apart clause (i.e., a clause with fresh variables
not used before in the computation) of P , σ = mgu(ai = h), and G′ ≡
(a1 ∧ · · · ∧ ai−1 ∧ b1 ∧ · · · ∧ bm ∧ ai+1 ∧ · · · ∧ an)σ; we often omit P , R, and/or
σ in the notation of an SLD resolution step when they are clear from the
context.

Let P be a program, G0 a goal and R a computation rule. An SLD
derivation for G0 with P andR is a (finite or infinite) sequence G0, G1, G2, . . .
of goals, a sequence C1, C2, . . . of renamed apart clauses of P , a sequence
R(G0), R(G1), R(G2), . . . of selected atoms, and a sequence θ1, θ2, . . . of
most general unifiers such that Gi−1 ;θi

Gi using Ci for all i > 0. We
often use G0 ;∗

θ Gn as a shorthand for G0 ;θ1 G1 ;θ2 · · · ;θn Gn with
θ = θ1 · · · θn (where θ = id if n = 0). An SLD derivation G ;∗

θ G
′ is
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successful when G′ ≡ true; in this case, we say that θ |̀Var(G) is the computed
answer substitution.

As it is common practice, SLD derivations are represented by a (possibly
infinite) finitely branching tree called SLD tree.

3. Closed SLD Trees

In this section, we present a framework for constructing a data structure
that extends standard SLD trees by using four basic operations: unfolding,
flattening, splitting, and subsumption. When this tree is closed—which im-
plies that it is finite—we prove that the tree still represents all the computed
answers of the original (possibly infinite) SLD tree. Therefore, in this work
we aim at preserving the answers computed in successful derivations.

Definition 1 (success set). Let P be a program, G a goal and R a com-
putation rule. The success set SSRP (G) of G with P and R is defined as
follows:

SSRP (G) = {θ |̀Var(G)| G ;∗
P,R,θ true}

We often ignore the computation rule and write SSP (G) instead since the
computed answers are the same (up to variable renaming) for any computa-
tion rule [24].

3.1. Basic Operations

Let us now introduce the basic operations of our framework for construct-
ing closed SLD trees. The first operation, unfolding, consists in applying an
SLD resolution step to a goal labelling a leaf of the tree built so far.

Definition 2 (unfolding). Let P be a program and G be a goal. Let
G ;P,R,σ G

′ be an SLD resolution step for some computation rule R. Then,
we say that G′ in an unfolding of G using R.

We note that an unfolding operator may take the “history” into account
(e.g., to avoid unfolding growing calls to a given predicate, according to
some order). We refer the reader to, e.g., [12, 21], for unfolding operators
that avoid infinite unfolding in the literature of partial evaluation. Also, in
Section 5, we consider an unfolding rule that selects the leftmost atom in a
goal which does not embed a previously selected atom in the same derivation.

The second operation, flattening, basically amounts to generalize a goal
by replacing some subterms by fresh variables, and then adding the cor-
responding equalities to the derived goal. We let θ̂ denote the equational
representation of a substitution θ, i.e., if θ = {x1 7→ t1, . . . , xn 7→ tn} then
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θ̂ = (x1 = t1 ∧ · · · ∧xn = tn). Moreover, we assume that every program
implicitly contains a clause for syntactic equality of the form x = x← true.

Definition 3 (flattening). Let G ≡ (G1 ∧G2θ ∧G3) be a goal, where Gi,
1 ≤ i ≤ 3, are (possibly empty) conjunctions of atoms and θ 6= id is a
substitution which is not a renaming and such that Dom(θ) ⊆ Var(G2)
and Dom(θ) ∩ (Var(G1) ∪ Var(G3)) = ∅. Then, we say that the goal

(G1 ∧ θ̂ ∧G2 ∧G3) is a flattening of G.

Example 4. Consider the goal G ≡ p(f(X), Y) ∧ q(a, f(b)). Then, we have
that the goal

p(f(X), Y) ∧ (Z = a) ∧ (W = b) ∧ q(Z, f(W))

is a flattening of G, while

p(f(X), Y) ∧ (X = a) ∧ (W = b) ∧ q(X, f(W))

is not since X ∈ Var(p(f(X), Y)). Also, given the goal G ≡ p(X, X), we have
that the goal (A = X) ∧ (B = X) ∧ p(A, B) is a flattening of G.

The flattening operation is sound and complete, i.e., no precision is lost by
applying flattening steps in an SLD tree:

Theorem 5 (correctness of flattening). Let P be a program and G a
goal. If G′ is a flattening of G, then SSP (G) = SSP (G′) [Var(G)] (up
to variable renaming).

Proof. Let us assume that G ≡ (G1 ∧G2θ ∧G3), where Gi, 1 ≤ i ≤ 3, are
conjunctions of atoms and θ 6= id is a substitution which is not a renaming
and such that Dom(θ) ⊆ Var(G2) and Dom(θ) ∩ (Var(G1) ∪ Var(G3)) = ∅,
with G′ ≡ (G1 ∧ θ̂ ∧G2 ∧G3). By considering a left-to-right computation rule,
we have that any successful derivation of G with P is prefixed by

(G1 ∧G2θ ∧G3) ;∗
σ (G2θ ∧G3)σ

iff the corresponding derivation for G′ with P is prefixed by

(G1 ∧ θ̂ ∧G2 ∧G3) ;∗
σ (θ̂ ∧G2 ∧G3)σ

Furthermore, since Dom(θ) ∩ Var(G1) = ∅ and clauses are renamed apart

in a derivation, we have that Dom(θ) ∩ Dom(σ) = ∅ and, thus, mgu(θ̂σ) =
{x 7→ xθσ | x ∈ Dom(θ)}. Assume δ = {x 7→ xθσ | x ∈ Dom(θ)} with
Dom(δ) ∩ Var(G3) = ∅ since Dom(θ) ∩ Var(G3) = ∅. Therefore, we have
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(θ̂ ∧G2 ∧G3)σ ;∗
δ (G2θ ∧G3)σ. Hence, under a left-to-right computation rule

RL, we have SSRL
P (G) = SSRL

P (G′) [Var(G)] since Dom(δ) ∩ Var(G) = ∅.
Finally, by the independence of the computation rule [24], we have that
SSRP (G) = SSR′

P (G′) [Var(G)] also holds for any arbitrary computation rules
R and R′. 2

Our next operation is called splitting. It has been already used in different
contexts to break up a conjunction of atoms (see, e.g., the use of splitting in
the partial evaluation of logic programs [14]). Let us first recall some termi-
nology from [14]. Given a set S, we letM(S) denote all multisets composed
of elements of S, and let =r denote syntactic identity up to reordering on
conjunctions. Given a multiset M , we use the notation ∧C∈MC to denote
a conjunction constructed from the elements of M , taking their multiplicity
into account. For example, for the multiset M = {{B,B,D}}, ∧C∈MC refers
to either of the conjunctions B ∧B ∧D, B ∧D ∧B, or D ∧B ∧B.

Definition 6 (partitioning function [14]). Let C denote the set of all
conjunctions of atoms over the given alphabet. A partitioning function is
a mapping p : C 7→ M(C) such that for any B ∈ C, B =r ∧C∈p(B)C.

The splitting operation then uses a partitioning function to split up a goal
into a number of subgoals:

Definition 7 (splitting). Let G be a goal and let p be a partition function.
Then, the splitting of G using p gives rise to a collection of subgoals G1, . . . ,
Gn, n ≥ 1, where p(G) = {{G1, . . . , Gn}}.

Analogously to the unfolding operator, a splitting operator or partition func-
tion may also take into account the history of a computation in order to
produce the best partition. Actually, splitting is the only real source of ab-
straction in our framework. Whenever we split a goal, the subgoals will be
evaluated independently and, thus, some variable bindings will not be shared
anymore between these goals. Therefore, splitting should be applied care-
fully in order to minimize the loss of precision. Observe, nevertheless, that
the global tree data structure still contains enough information to extract all
(and only) the computed answers of the original program (see Theorem 11
below). The loss of precision is thus only local to single derivations, where
some atoms may be more general and perform some unnecessary steps (which
are then discarded when composing them with the answers coming from other
subgoals using the parallel composition operator, see below).
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Example 8. Consider the goal p(X) ∧ q(Y, Z) ∧ r(X). A splitting operator may
return the subgoals p(X) ∧ q(Y, Z) and r(X). By considering a left-to-right
computation rule as in Prolog, this splitting may involve performing some
unnecessary steps for r(X) since the bindings from the first subgoal will not
be applied to r(X).

A better splitting operator would instead return the subgoals: p(X) ∧ r(X)
and q(Y, Z), so that we avoid the independent evaluation of shared variables.

The correctness of splitting is a consequence of the fact that SLD resolution is
compositional [13, 28]. Let us now recall the definition of parallel composition
of substitutions, denoted by ⇑ in [28].

Definition 9 (parallel composition [28]). Let θ1 and θ2 be two idempo-
tent substitutions. Then, we define ⇑ as follows:

θ1 ⇑ θ2 =

{
mgu(θ̂1 ∧ θ̂2) if θ̂1 ∧ θ̂2 has a solution (a unifier)
fail otherwise

Parallel composition is then extended to sets of substitutions in the natural
way: Θ1 ⇑ Θ2 = {θ1 ⇑ θ2 | θ1 ∈ Θ1, θ2 ∈ Θ2, θ1 ⇑ θ2 6= fail}.

In order to state and prove the correctness of splitting, we first need a compo-
sitionality result for logic programs. The compositionality of SLD resolution
in logic programming can then be stated as follows:

Theorem 10 (compositionality [13, 28]). Let P be a program and G1 ∧G2

be a goal, where G1, G2 are (possibly empty) conjunctions of atoms. Then,
we have SSP (G1 ∧G2) = SSP (G1) ⇑ SSP (G2).

The correctness of the splitting operation is thus a straightforward conse-
quence of the compositionality of SLD resolution:

Theorem 11 (correctness of splitting). Let P be a program and G be a
goal. Let p be a partitioning function with p(G) = {{G1, . . . , Gn}}, n > 0.
Then, SSP (G) = SSP (G1) ⇑ · · · ⇑ SSP (Gn), up to variable renaming.

Proof. Immediate by Theorem 10.

Our last operation is called subsumption. Subsumption is used to check if a
leaf of the tree built so far is a variant of a previous goal in this tree so that
we can avoid its evaluation. Therefore, subsumption allows us to introduce
a sort of memoization.
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Definition 12. Let G be a goal and let S be a set of goals. We say that G
is subsumed by S if there exists a goal G′ ∈ S such that G ≈ G′ (i.e., they
are equal up to variable renaming).

Let us note that, in many related works (particularly, in the area of partial
evaluation), a goal G is said to be subsumed by another goal G′ if G is an
instance of G′. However, in our framework, a similar effect can be achieved
by first applying flattening and then splitting and subsumption. We prefer
to keep these operations independent so that the resulting framework is more
flexible and customizable.

The correctness of subsumption is an easy consequence of the fact that
the success set of a goal and that of a renaming of this goal is the same
up to variable renaming. In the following, we say that two substitutions θ1

and θ2 are variants, in symbols θ1 ≈ θ2, iff θ1 = mgu(θ̂2ρ) for some variable
renaming ρ. This notion is naturally extended to sets as follows: Θ1 ≈ Θ2

implies that there is a substitution θ1 ∈ Θ1 iff there is a substitution θ2 ∈ Θ2

such that θ1 ≈ θ2.

Theorem 13 (correctness of subsumption). Let P be a program, G a
goal and G′ a variant of G (i.e., G ≈ G′). Then, SSP (G) ≈ SSP (G′).

Proof. The proof is a straightforward consequence of Corollary 3.19 in [5]
since, for each SLD derivation from G, we can construct a similar SLD
derivation for G′, and vice versa. Roughly speaking, two SLD derivations
are similar if the initial goals are variants of each other, the length of the
derivations is the same, and for each SLD resolution step, the same atoms
are selected and variants of the same clauses are considered. 2

3.2. Extended SLD Trees

Now, we formalize a new data structure that extends the original notion
of SLD tree to also allow the application of the operations introduced so far.
In the following, we denote these data structures with the symbol τ . Also,
we denote by Goal the domain of goals (including true and fail) and by Subs
the domain of substitutions, respectively. Moreover, we let Goal denote the
domain of marked goals, that we graphically depict with an underscore, i.e.,
Goal = {G | G ∈ Goal}.

Definition 14 (extended SLD tree). Let P be a program, G0 a goal, and
R a computation rule. An extended SLD tree τ for G0 with P and R
is an acyclic, directed rooted node- and edge-labeled graph. It is denoted
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by a pair (N , E), where N = Goal ∪ Goal is the set of nodes and E ⊆
N × {unf, flat, sub, split} × N is a set of labelled directed edges.2

We note that our extended SLD trees share some similarities with the AND-
OR trees introduced in [10], since we also combine OR steps (unfolding with
respect to all matching clauses) and AND steps (splitting).

In the following, we use G ∈ τ to denote that there exists a node labelled
with a goal G in the tree τ . Marked nodes are graphically denoted by un-
derlining them. We use the notation τ [G] to denote that the tree τ contains
a leaf labelled with G which is not marked (we use τ [G] when it is marked).
We also use this notation for the edges that lead to leaves, e.g., τ [G →l G′]
denotes that τ contains an edge from (marked) node G to (non-marked) leaf
G′ labelled with l. As we will see below in the transition rules, we use this
notation either as a condition on a tree τ or as a modification of τ .

Let P be a program, G0 a goal, and R a computation rule. An extended
SLD tree for G0 with P and R is built as follows.

• The initial tree contains no edges and only one non-marked node la-
belled with G0.

• The initial tree is expanded using the transition rules shown in Fig. 1,
where the program and the computation rule are considered global
parameters and they are not explicitly shown.

• Rules success and failure just terminates a branch when the special
atoms true (success) or fail (failure) are derived.

• The subsumption rule checks whether there is a previous node in the
same root-to-leaf path such that G and G′ are variants. We require
the path G′ →+ G (here, →+ denotes a path of one or more steps)
to include at least one unfolding step in order to avoid introducing
a loop with no real evaluation. We note that, in some approaches,
subsumption is rather denoted with an edge from the subsumed node
to the subsuming node. We prefer our definition in order to keep the
data structure a tree. Note also that, in this rule, the added leaf true
plays no role, only the label of the edge is relevant.

• The flattening rule proceeds as expected, by deriving a flattening of a
given goal. Here, we further require that the equations introduced by a

2Note, however, that when the label is unf or sub we label the step with some additional
information (see below). Here, we keep this simpler formulation for simplicity.
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flattening step cannot be unfolded until a goal only contains equations.
This condition is necessary to avoid introducing incorrect loops of the
form

G1 ∧G2θ ∧G3
flat// G1 ∧ θ̂ ∧G2 ∧G3

unf// · · ·
unf// G1 ∧G2θ̂ ∧G3

BC

ED
suboo

In contrast, any sensible strategy would apply splitting immediately
after flattening:

G1 ∧G2θ ∧G3
flat// G1 ∧ θ̂ ∧G2 ∧G3

split//

split**TTTTTTTTTTTTT
G1 ∧G2 ∧G3

θ̂

• The splitting rule proceeds as expected, and it is parametric w.r.t. a
given partitioning function.

• Finally, in the unfolding rule, the SLD resolution steps must be all and
only the SLD resolution steps for G with P and R (i.e., analogously to
standard SLD trees, a goal cannot be partially unfolded).

Example 15. Let us consider the following program Plen:

len([ ], 0). inc(0, s(0)).
len([X|R], Z) ← len(R, Y) ∧ inc(Y, Z). inc(s(N), s(M)) ← inc(N, M).

and the initial goal G ≡ len(A, B). While the standard SLD tree for goal
G with program Plen is trivially infinite, we can easily construct a finite
extended SLD tree for G with Plen (shown in Fig. 2).

Observe that the rules of Fig. 1 overlap, i.e., given an extended SLD tree with
some unmarked leaves, several rules can be applicable at the same time.
Actually, these transition rules define all possible extended SLD trees. In
practice, as we will see below, one should introduce a particular strategy
that builds just one such extended SLD tree. Also, note that any standard
SLD tree is also an extended SLD tree by only considering the rules success,
failure and unfolding from Fig. 1.

Given a standard SLD tree τ for a goal G, the computed answers of G
are obtained by composing the substitutions labelling the paths from G to

11



(success)
τ [true] −→ τ [true]

(failure)
G 6≡ true and 6 ∃G′ such that G ;P,R,σ G

′

τ [G] −→ τ [fail ]

(subsumption)

∃G′ ∈ τ : G′ →+ G in τ includes at least one unfolding step
and Gρ = G′ with ρ a renaming substitution

τ [G] −→ τ [G→sub
(G′,ρ) true]

(flattening)
G′ is a flattening of G
τ [G] −→ τ [G→flat G′]

(splitting)
p(G) = {{G1, . . . , Gn}} for some partitioning function p, n > 1

τ [G] −→ τ [G→split G1, . . . , G→split Gn]

(unfolding)
G ;P,R,σ1 G1, . . . , G ;P,R,σn Gn

τ [G] −→ τ [G→unf
(P,R,σ1) G1, . . . , G→unf

(P,R,σn) Gn]

Figure 1: Construction of Extended SLD trees

true in τ . Now, we introduce an analogous function that extracts the set
of computed answers that are represented by an extended SLD tree. In the
following, besides the standard composition of substitutions, we also consider
its extension to sets of substitutions as follows. Given a set of substitutions Θ
and a substitution σ, we let σ·Θ = {σ·θ | θ ∈ Θ}. Moreover, for simplicity, we
do not distinguish between a substitution σ and the singleton set {σ} when
no confusion can arise. Also, we set σ · { } = { } and { } ⇑ Θ = Θ · { } = { }.

Definition 16 (success set of an extended SLD tree). Let P be a pro-
gram and G0 be a goal. Let τ be an extended SLD tree for G0 with P . Then,
the success set of G0 using τ , in symbols SSτ (G0), is defined as follows:

SSτ (G0) = {σ |̀Var(G0)| σ ∈ ssτ (G0)}

where the definition of the auxiliary function ss is shown in Fig. 3.3

In practice, the success set of an extended SLD tree can be obtained, e.g.,
by following a depth-first exploration of the search space, similarly to an

3Here, we do not distinguish whether a node is marked or not since it is not relevant.
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len(A, B)

unf
{A7→[],B7→0}

||yyyyyy
unf

{A7→[X|R],B7→Z}
((QQQQQQQQ

true len(R, Y) ∧ inc(Y, Z)

split
vvmmmmmmmm

split
((QQQQQQQQ

len(R, Y)

sub(len(A,B),{R 7→A,Y7→B})
��

inc(Y, Z)

unf
{Y7→0,Z7→s(0)}

vvmmmmmmmmmm
unf

{Y7→s(N),Z 7→s(M)}
$$JJJJJJ

true true inc(N, M)

sub (inc(Y,Z),{N 7→Y,M 7→Z})
��

true

Figure 2: Extended SLD tree for len(A, B) with Plen.

ssτ (G) =



{id} if G ≡ true
{ } if G ≡ fail
ρ · ssτ (G′) if G→sub

(G′,ρ) true ∈ τ
ssτ (G′) if G→flat G′ ∈ τ
ssτ (G1) ⇑ · · · ⇑ ssτ (Gn) if G→split G1, . . . , G→split Gn ∈ τ
σ1 · ssτ (G1) ∪ · · · ∪ σn · ssτ (Gn) if G→unf

σ1 G1, . . . , G→unf
σn Gn ∈ τ

Figure 3: Auxiliary function ss

standard SLD tree. The main differences are that subsumption steps imply
moving back to a previous node of the tree (rather than to its first child) and
that splitting involves computing all possible combinations of the different
subtrees. Clearly, a fixpoint computation is also possible; we refer the reader
to the fixpoint computation for success set equations shown in Section 3.3,
since the procedure here would be analogous.

Example 17. Let us consider the extended SLD tree τ for the initial goal
G ≡ len(A, B) shown in Figure 2, where G′ ≡ inc(Y, Z). The associated
success set is computed using the function ssτ following a depth-first strategy
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as follows:

ssτ (G)⊇{A 7→ [], B 7→ 0}·{id} 3 {A 7→ [], B 7→ 0}
ssτ (G)⊇{A 7→ [X|R], B 7→ Z}·({R 7→ A, Y 7→ B}·ssτ (G) ⇑ ssτ (G′))

3{A 7→ [X|R], B 7→ Z}·({R 7→ A, Y 7→ B}·{A 7→ [], B 7→ 0} ⇑ {Y 7→ 0, Z 7→ s(0)})
={A 7→ [X|R], B 7→ Z}·({R 7→ [], Y 7→ 0} ⇑ {Y 7→ 0, Z 7→ s(0)})
={A 7→ [X|R], B 7→ Z}·{R 7→ [], Y 7→ 0, Z 7→ s(0)}
={A 7→ [X], B 7→ s(0)}

. . .

In general, however, we are not interested in arbitrary extended SLD trees
but only in closed SLD trees:

Definition 18 (closed SLD tree). Let τ be an extended SLD tree. We
say that τ is closed iff all nodes are marked.

Trivially, closed SLD trees are finite. Moreover, their associated success set
is the same as the original (possibly infinite) SLD tree for the same goal and
program:

Theorem 19. Let P be a program and G be a goal. Let τ be a closed SLD
tree for G with P . Then, SSP (G) = SSτ (G) up to variable renaming.

Proof. Essentially, the proof of this claim is a consequence of Theorems 5,
11 and 13. Let us now consider SSP (G) ⊆ SSτ (G) and SSP (G) ⊇ SSτ (G)
independently.

(⊆) We prove that, for all computed answer θ ∈ SSP (G), there exists θ ∈
SSτ (G); for simplicity, we consider that clauses are standardized apart (i.e.,
renamed with fresh variable) using the same renamings.

Let us consider that G0 ;∗
θ true with P (where θ is assumed restricted to

the variables of G0 for simplicity). Now, we introduce the following auxiliary
functions:

• we let |G| denote the weight of goal G, i.e., the number of constant
and function symbols in the atoms of G (not including the equalities
introduced by flattening steps);

• we let sh(G) be the number of occurrences of repeated variables in G
(again, not including the equalities introduced by flattening steps).

14



Then, given a derivation D ≡ (G0 ;θ1 · · · ;θn true), we let W(D) =
n′ + |G0| + sh(G0), where n′ ≤ n is the number of steps in which an atom
has been unfolded (not including the last steps for unifying the equalities
introduced by flattening, if any).

Now, we prove the claim by induction on W(D). We distinguish the
following cases depending on the rule applied in the closed SLD tree to G0:

• If a step with rule success is performed, the proof is done.

• If an unfolding step is applied, say G0 →unf
σ G1, the claim follows triv-

ially by induction since the same step is performed in both trees and,
thus, W(G1 ;∗ true) <W(G0 ;∗ true), with σ · SSτ (G1) ⊆ SSτ (G0).

• Consider now that a flattening step G0 →flat G′0 is applied in the closed
SLD tree. By Theorem 5, we have that SSP (G0) = SSP (G′0) [Var(G0)].
Therefore, now we consider the goal G′0 and an associated derivation
G′0 ;∗ true in P . Trivially, W(G′0 ;∗ true) < W(G0 ;∗ true) since
both derivations are identical except for the additional equalities and
either |G′0| < |G0| or sh(G′0) < sh(G0). Hence, the claim follows by
induction since SSτ (G0) = SSτ (G′0).

• Consider now that a closed SLD tree applies a splitting step G0 →split

G1
0, . . . , G0 →split Gm

0 . By Theorem 11, we have that SSP (G0) =
SSP (G1

0) ⇑ · · · ⇑ SSP (Gm
0 ). Then, we now consider the independent

SLD derivations Gi
0 ;∗

θi
true in P , i = 1, . . . ,m. By induction (since

W(Gi
0 ;∗

θi
true) < W(G0 ;∗ true)), we have that θi ∈ SSτ (Gi

0).
Therefore, by definition, we have θ1 ⇑ · · · ⇑ θm ∈ SSτ (G0) and the
claim follows.

• Consider finally that a subsumption step G0 →sub
(G′,ρ) true is applied, with

SSτ (G0) = ρ·SSτ (G′). Here, we proceed analogously as in the previous
cases depending on the rule applied to G′ in the closed SLD tree. This
is safe by Theorem 13 and the fact that the path G′ →+ G in τ must
contain at least one unfolding step (thus at some point the length of
the derivation decreases and induction applies).

(⊇) Assume now that θ ∈ SSτ (G). By definition of function SSτ , we can
construct a derivation of the form G→∗ true by replacing subsumption edges
of the form G1 →sub

(G′,ρ) true in τ by G1 →sub
(G′,ρ) G

′ and, then, considering the
edges issuing from G′ in τ . The proof proceeds now by induction on the
number of steps in such a derivation. We distinguish the following cases
(analogously to the definition of function SSτ ):
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• If G ≡ true, the proof is done (note that the case G ≡ fail should not
be considered since, in this case, no computed answer is obtained).

• If G →sub
(G′,ρ) G

′, then we have ρ · SSτ (G′) = SSτ (G). Then, the claim
follows by Theorem 13 and by induction, since the length of G′ →∗ true
is strictly smaller than the length of G→∗ true.

• If G →flat G′ then, by Theorem 5, we have SSP (G) = SSP (G′).
Therefore, the claim follows by induction since the number of steps in
G′ →∗ true is strictly smaller than the number of steps in G →∗ true
and SSτ (G) = SSτ (G′).

• If G→split G1, . . . , G→split Gn then, by Theorem 5, we have SSP (G) =
SSP (G1) ⇑ · · · ⇑ SSP (Gn). Therefore, the claim follows by induction
since the number of steps in each derivation Gi →∗ true is strictly
smaller than the number of steps inG→∗ true and SSτ (G) = SSτ (G1) ⇑
· · · ⇑ SSτ (Gn), n > 1.

• Finally, if G →unf
σ G′, the same step should also be performed in the

original SLD tree and, thus, the claim follows by induction since σ ·
SSτ (G′) ⊆ SSτ (G).

2

Therefore, the computed answers of the original program can still be ob-
tained from an associated closed SLD tree. In some sense, our closed SLD
trees are in between the original program (which also represents all possi-
ble answers implicitly) and the real (possibly infinite) SLD tree. Depending
on the program and the accuracy of the extended SLD tree built, we will be
closer to the original program or to the standard SLD tree. Nevertheless, our
purpose is not to compute the answers for a given goal, but to use the finite
representation of the search space for program analysis and transformation
techniques.

Although Theorem 19 is essential to state the correctness of closed SLD
trees, it might be insufficient in those cases where we need to analyze not
only the computed answers, but also the calls that arise during the evaluation
of a goal (which is essential, e.g., for some static analyses or model checking
techniques).

Definition 20 (calls). Let P be a program, G a goal, and τ an (extended)
SLD tree for G with P and some computation rule R. We say that an atom
a is a call in a derivation of G with P and R iff there is a path from G to G′
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in τ and G′ ≡ (C1 ∧ a ∧C2) for some (possibly empty) conjunctions C1, C2.
We denote by callsτ (G) the set of all calls in the derivations for G in τ .

Now, we can state the property mentioned above as follows:

Theorem 21. Let P be a program, G a goal, and R a computation rule. Let
τ be a (possibly infinite) SLD tree for G with P and R and let τ ′ be a closed
SLD tree for G with P and R. Then, for each call a ∈ callsτ (G), there exists
a call a′ ∈ callsτ ′(G) such that a′ ≤ a.

Proof. This result is a consequence of the fact that the same computation
rule is used in both trees and the following easy property: if a (possibly
infinite) SLD derivation G0 ; G1 ; · · · can be proved for some goal G0

with P and R using the clauses C1, C2, . . ., a corresponding derivation G′0 ;

G′1 ; · · · can also be proved for G′ ≤ G with P and R using the same
clauses C1, C2, . . . and so that the same atoms are selected (though they
might be more general in G′i). In other words, generalizing some terms of
a goal cannot discard any of the original derivations (but might introduce
some more derivations that were not possible, of course).

Now, we prove a slightly more general claim: Let P be a program, G
a goal, and R a computation rule. Let τ be a (possibly infinite) SLD tree
for G with P and R and let τ ′ be a closed SLD tree for G′ with P and
R, where G′ ≤ G (but the predicate symbols are the same, i.e., only terms
can be generalized). Then, for each call a ∈ callsτ (G), there exists a call
a′ ∈ callsτ ′(G′) such that a′ ≤ a.

Let us consider a call a ∈ callsτ (G). Therefore, there exists a derivation
G ≡ G0 ; G1 ; · · · ; C1, a, C2 for G with P and R in τ . We prove the
above claim by induction on the length of the derivation G0 ; G1 ; · · ·;
C1, a, C2. We distinguish the following cases, depending on the rule applied
in τ ′ to the corresponding goal G′:

• For the cases success and failure, the claim follows trivially.

• If an unfolding step is applied, both trees would proceed analogously, so
G′0 →unf G′1. Then, it is straightforward that G′1 ≤ G1 since G′0 ≤ G0.
Therefore, the claim follows by induction.

• When a flattening step is performed, we have that

G′0 ≡ C1 ∧C2θ ∧C3 →flat C1 ∧ θ̂ ∧C2 ∧C3 ≡ G′1

Now, since we assumed that θ̂ cannot be unfolded until all other atoms
are fully evaluated, we trivially have that callsτ ′(G′1) = calls(G′′1), with
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G′′1 ≡ C1 ∧C2 ∧C3. Now, we consider G′′1 ≤ G′0 ≤ G0 and the proof
proceeds by choosing some of these cases again. Observe that the
number of possible flattenings is finite and, thus, at some point we
should apply a different rule so that the claim will follow by induction.

• If an splitting step is performed: G′0 →split G′01, . . . , G′0 →split G′0m.
First, let us consider the partitioning function p applied in this splitting
step. Trivially, for all call a ∈ callsτ (G0), there exists a′ ∈ callsτ (G01)∪
· · · ∪ callsτ (G0m) with a′ ≤ a and p(G0) = {{G01, . . . , G0m}}, since the
bindings coming from the evaluation of previous subgoals are not ap-
plied anymore. On the other hand, we have callsτ ′(G′0) = callsτ ′(G′01)∪
. . .∪callsτ ′(G′0m). Therefore, the claim follows by induction considering
the derivations for G0i in τ since G′0i ≤ G0i, i = 1, . . . ,m, m > 1.

• Finally, if a subsumption step G′0 →sub
(G′,ρ) true is performed, then we

have callsτ ′(G′0) ≈ callsτ ′(G′) and, thus, for all a ∈ callsτ ′(G′0) there
exists a′ ∈ callsτ ′(G′) with a ≤ a′ and a′ ≤ a. Trivially, we have
G′ ≤ G′0 ≤ G0. Now, we choose again some of these cases depending
on the applied rule in τ ′. As in the previous proof, this is safe by the fact
that at least one unfolding step must be applied between subsumption
steps and, then, induction applies. 2

3.3. Success Set Equations

Finally, we show that the success set represented by a closed SLD tree can
be compactly represented using equations. We follow a similar construction
as the one in [26] for rewrite systems. First, our equational notation considers
the following three operators:4

• Composition (·), i.e., the standard composition on substitutions ex-
tended to sets, as mentioned before.

• Alternative (+), where an expression like ss1 + ss2 denotes the union
of the success sets denoted by ss1 and ss2.

• Parallel composition (⇑), i.e., the operator introduced in Definition 9.

Now, we introduce a technique to extract the success set equations of a goal
from a given closed SLD tree. Intuitively speaking, the process starts by
partitioning the closed SLD tree into those subtrees that are rooted by a

4As for the operator precedence, we assume that composition has a higher priority than
parallel composition, which has a higher priority than alternative.
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len(A, B)

unf
{A7→[],B7→0}

yysssssssss
unf

{A7→[X|R],B7→Z}

))RRRRRRRRRRR

true len(R, Y) ∧ inc(Y, Z)
split

uulllllllllll
split

))RRRRRRRRRRR

len(R, Y)

sub (len(A,B),{R7→A,Y7→B})
��

inc(Y, Z)

true

inc(Y, Z)

unf
{Y7→0,Z7→s(0)}

yysssssssss
unf

{Y7→s(N),Z7→s(M)}

&&NNNNNNNNN

true inc(N, M)

sub (inc(Y,Z),{N 7→Y,M 7→Z})
��

true

Figure 4: Subtrees of the extended SLD tree in Fig. 2

node which has been used to perform a subsumption step. For instance,
for the tree τ of Fig. 2, we consider the two subtrees shown in Fig. 4 (note
that inc(Y, Z) occurs in both trees). Then, an equation is produced for
each subtree following these ideas: substitutions along derivations with SLD
resolution steps are just composed; the success sets of the different branches
issuing from a goal are put together using the alternative operator; flattening
steps are ignored; splitting steps involve computing the parallel composition
of the success sets of the different branches; finally, for subsumption steps,
we compose the current set with the substitution labeling the step and, then,
with the success set of the previous variant goal.

In the following, given a closed SLD tree τ , we denote with subtrees(τ)
the set of subtrees of τ that are obtained by partitioning τ into those subtrees
that are rooted by a node which has been used to perform a subsumption
step in the tree (i.e., that occurs in the label (G′, ρ) of some subsumption
edge). Note that the nodes used for subsumption are duplicated in these
subtrees (as the root of one of them, and a leaf in the other one).

Definition 22 (success set equations). Let P be a program and G0 a
goal. Let τ0 be a closed SLD tree for G0 with P . Let T = subtrees(τ0).
Then, we produce a success set equation [FG = eqτ (G)] for each tree τ ∈ T
with root(τ) = G, where the definition of the auxiliary function eqτ is shown
in Fig. 5.
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eqτ (G) =



id if G ≡ true

fail if G ≡ fail

FG if G is a leaf different from true and fail

ρ · FG′ if G→sub
(G′,ρ) true ∈ τ

eqτ (G′) if G→flat G′ ∈ τ
eqτ (G1) ⇑ · · · ⇑ eqτ (Gn) if G→split G1, . . . , G→split Gn ∈ τ

σ1 · eqτ (G1) + · · ·+ σneqτ (Gn) if G→unf
σ1 G1, . . . , G→unf

σn Gn ∈ τ

Figure 5: Auxiliary function eqτ

Note that we have σ · fail = fail , fail ⇑ Θ = Θ ⇑ fail = fail , and
fail ∪Θ = Θ ∪ fail = Θ.

Here, we denote with sols(FG) the (possibly infinite) set of solutions of the
success set equation FG for some goal G.

Let us consider a set of success set equations FG1 = r1, . . . , FGn = rn
associated to the SLD derivations starting from a goal G1. A procedure to
enumerate the substitutions in sols(FG1) can proceed as follows:

1. Initialization. F 0
G1

= · · · = F 0
Gn

= ∅.
2. Iterative process. For all i > 0, we compute the following sets:

F i
G1

= r1[FG 7→ F i−1
G ] . . . F i

Gn
= rn[FG 7→ F i−1

G ]

where rj[FG 7→ F i−1
G ] denotes the expression that results from rj by

replacing every occurrence of FG by F i−1
G , with j = 1, . . . , n and G ∈

{G1, . . . , Gn}.

Then, we have sols(FG1) =
⋃
i>0 F

i
G1

, where the F i
G1

are computed as above.
We do not formally prove the correctness of the above procedure for

computing sols(FG) since it is rather standard.

Example 23. Let us consider the following slight variation of the program
in Example 15:

len([ ], [ ]). inc(0, s(0)).
len([X|R], Z) ← len(R, Y) ∧ inc(Y, Z). inc(s(N), s(M)) ← inc(N, M).

and the initial goal G ≡ len(A, B). We consider a closed SLD tree which is
essentially the same as that of Figure 2, that we decompose into two subtrees
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len(A, B)

unf
{A7→[],B 7→[]}

yysssssssss
unf

{A7→[X|R],B7→Z}

))RRRRRRRRRRR

true len(R, Y) ∧ inc(Y, Z)
split

uulllllllllll
split

))RRRRRRRRRRR

len(R, Y)

sub (len(A,B),{R7→A,Y7→B})
��

inc(Y, Z)

true

inc(Y, Z)

unf
{Y7→0,Z7→s(0)}

yysssssssss
unf

{Y7→s(N),Z7→s(M)}

&&NNNNNNNNN

true inc(N, M)

sub (inc(Y,Z),{N 7→Y,M 7→Z})
��

true

Figure 6: Subtrees from Example 23

as shown in Figure 6. Then, the success set equations using the subtrees of
Fig. 6 are the following:

FG = {A 7→ [ ], B 7→ [ ]}
+ {A 7→ [X|R], B 7→ Z} · ({R 7→ A, Y 7→ B} · FG ⇑ FG′)

FG′ = {Y 7→ 0, Z 7→ s(0)}
+ {Y 7→ s(N), Z 7→ s(M)} · {N 7→ Y, M 7→ Z} · FG′

where G ≡ len(A, B) and G′ ≡ inc(Y, Z).
Informally speaking, the (infinite) solutions of these equations can be

enumerated iteratively as follows. One starts with F 0
G = { } and F 0

G′ = { }.
Then, we compute the next iteration i > 0 as follows:

F i
G = {A 7→ [ ], B 7→ [ ]}

+ {A 7→ [X|R], B 7→ Z} · ({R 7→ A, Y 7→ B} · F i−1
G ⇑ F i−1

G′ )

F i
G′ = {Y 7→ 0, Z 7→ s(0)}

+ {Y 7→ s(N), Z 7→ s(M)} · {N 7→ Y, M 7→ Z} · F i−1
G′

Therefore, we have the following finite sequence:5

F 1
G = {{A 7→ [ ], B 7→ [ ]}} F 2

G = F 1
G

5We restrict substitutions to Var(len(A, B)) for conciseness.
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Actually, it is easy to see that, in this case, the only solution of FG is
{A 7→ [ ], B 7→ [ ]} because the parallel composition {R 7→ A, Y 7→ B} ·FG ⇑ FG′

has no solutions, since variable Y is bound to [ ] in the leftmost expression,
{R 7→ A, Y 7→ B} · FG , and to 0 in the rightmost one, FG′ . Indeed, one can
conclude that the program was incorrect: the bug is in the first clause of len,
which should be len([ ], 0), as in Example 15.

The success set equations can be useful, e.g., for program comprehension or
formally analyzing the success set of a program.

4. Construction of Closed SLD Trees

In this section, we introduce some strategies that allow us to construct
closed SLD trees with different levels of abstraction. We illustrate their
application through some examples.

4.1. Maximal Abstraction
Our first strategy considers a maximal abstraction so that the closed SLD

tree will be very small. As a counterpart, the information represented by the
tree is not so different from just considering the text of the original program.
Intuitively speaking, it constructs a sort of call graph for the program.

The rules for constructing a closed SLD tree with this strategy can be
found in Fig. 7. Here, we assume that the rules are tried by following a textual
order and discarding the application of all the other rules as soon as a rule
is applicable. We do it for simplicity; otherwise some additional premises
would be required. Basically, this strategy applies splitting in order to only
consider atomic goals and, moreover, applies flattening to always consider
(a renaming of) the atoms in the body of the program clauses without the
instantiation coming from the unification with the head of the clause.

Straightforwardly, this strategy produces a closed SLD tree since the num-
ber of (variants of) the atoms in the bodies of the clauses is finite.

Example 24 (improving termination analysis). Consider the following
simple program Ploop:

nat(0). loop(a).
nat(s(X)) ← nat(X) ∧ loop(a). loop(b) ← loop(b).

and the initial goal G ≡ nat(X). By using the maximal abstraction, we get
the closed SLD tree of Figure 8.6 Now, one can analyze the transitions in this

6We skip the flattening steps since they are not necessary, i.e., we already derive a
variant of the body atoms by unfolding. We often skip these steps in this section when
they are not necessary to ensure termination.
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(success)
τ [true] −→ τ [true]

(failure)
G 6≡ true and 6 ∃G′ such that G ;P,R,σ G

′

τ [G] −→ τ [fail ]

(subsumption)

∃G′ ∈ τ : G′ →+ G in τ includes at least one unfolding step
and Gρ = G′ with ρ a renaming substitution

τ [G] −→ τ [G→sub
(G′,ρ) true]

(flattening)
σ = θ |̀ Var(G′)

τ [G→unf
(P,R,θ) G

′θ] −→ τ [G→unf
(P,R,θ) G

′θ →flat σ̂ ∧G′]

(splitting)
G ≡ a1 ∧ · · · ∧ an and n > 1

τ [G] −→ τ [G→split a1, . . . , G→split an]

(unfolding)
G ;P,R,σ1 G1, . . . , G ;P,R,σn Gn

τ [G] −→ τ [G→unf
(P,R,σ1) G1, . . . , G→unf

(P,R,σn) Gn]

Figure 7: Closed SLD trees using maximal abstraction

tree (as in, e.g., [32]) in order to prove termination rather than the clauses
of the original program. Trivially, one will infer that the program terminates
for nat(X) (and its instances) while inspecting the source program (without
assuming any particular class of input goals) one would conclude that it is
not terminating because of the clause loop(b) ← loop(b). Therefore, our
technique might be useful for improving goal-dependent analyses.

Example 25 (partial evaluation). Consider the following program Pilist:

ilist([ ], I, [ ]).
ilist([X|R], I, [XI|RI]) ← ilist(R, I, RI) ∧ add(I, X, XI).

add(0, Y, Y).
add(s(X), Y, s(Z)) ← add(X, Y, Z).

and the initial goal G ≡ ilist(A, s(0), C). The standard SLD tree for G
with program Pilist (using, e.g., a left-to-right computation rule) is trivially
infinite. Fig. 9 shows the closed SLD tree for G with Pilist using the maximal
abstraction strategy, where predicates ilist and add are abbreviated to i

and a, respectively, and ρ1, ρ2 are the obvious variable renamings. Moreover,
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nat(X)
{X 7→0}

unf}}||
||

||
| {X 7→s(Y)}

unf &&MMMMMMMMM

true nat(Y) ∧ loop(a)

split

xxqqqqqqqqq
split

''NNNNNNNNN

nat(Y)

sub (nat(X),{Y 7→X})
��

loop(a)

{ }unf
��

true true

Figure 8: Closed SLD tree for nat(X) with Ploop using maximal abstraction.

i(A, s(0), C)
{A7→[],C7→[]}

unfzzuuu
uuu

uuu {A7→[X|R],C7→[XI|RI]}
unf ))TTTTTTTTTTTTT

true i(R, s(0), RI) ∧ a(s(0), X, XI)

split

uujjjjjjjjjjjjj
split

))TTTTTTTTTTTTT

i(R, s(0), RI)

sub (i(A,s(0),C),ρ1)
��

a(s(0), X, XI)

unf {XI7→s(X)}
��

true true

Figure 9: Closed SLD tree for ilist(X, Y) with Pilist using maximal abstraction.

to simplify the presentation, we skip some steps that are denoted with a
dotted arrow.

This is a well-known example for partial evaluation. The maximal ab-
straction strategy, however, is not successful in this case, since it would pro-
duce a residual program that is basically identical to the original one.

4.2. Depth-k Abstraction

Our next strategy is parametric w.r.t. a pair (c, d), where c is the max-
imum number of atoms in a goal and d is the maximum depth (number of
nested function symbols) in the arguments of predicate calls. By restricting
the number of atoms in a goal and the depth of terms, we ensure a finite
domain of goals (up to variable renaming) and, thus, the construction of a
closed SLD tree.

The depth-k abstraction strategy w.r.t. a pair (c, d) is formalized in
Fig. 10. As before, we assume that the rules are tried by following a textual
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order and discarding the application of all the other rules as soon as a rule is
applicable. This strategy is similar to the previous one, but delay flattening
and splitting until they become necessary to ensure the conditions on the
number of atoms in a goal and the depth of the terms:

• Flattening. We denote by depth(t) the usual function that returns the
maximum number of nested function symbols in a term t. We extend
it to atoms and goals as follows:

depth(p(t1, . . . , tn)) = max({depth(ti) | i = 1, . . . , n})
depth(a1 ∧ · · · ∧ am) = max({depth(ai) | i = 1, . . . ,m})

Then, given a goal G and a natural number d, we let flat(G, d) return
the pair (θ,G′) such that G′θ = G and depth(G) ≤ d. Here, the
function flat only generalizes the terms that violate the depth condition
(i.e., we assume that there is no overgeneralization).

Observe that this strategy is correct since we assumed that the equa-
tions introduced by a flattening step cannot be unfolded until a goal
only contains equations (see page 11).

• Given a goal G ≡ (a1 ∧ · · · ∧ an), an extended SLD tree τ and a natural
number c with n > c, split τ (G, c) applies some partition function to
return a number of subgoals {{G1, . . . , Gm}} so that none of them has
more than c atoms. Here, one can consider different criteria, like trying
to ensure that atoms with shared variables are kept together in the same
subgoal or using strategies that look for the best matching conjunction
in order to ease subsequent subsumption steps (as in [14]).

As mentioned above, this strategy always produces a closed SLD tree since
the number of (variants of) atoms and goals is finite.

Example 26 (partial evaluation). Consider again the program Pilist of
Example 25 and the initial goal G ≡ ilist(A, s(0), C). Fig. 11 shows the
closed SLD tree for G with Pilist and the left-to-right computation rule,
using the depth-k strategy and the pair (2, 2), where ρ1, ρ2, ρ3 are the obvious
renaming mappings.

Unfortunately, the tree is closed but it is still not appropriate for partial
evaluation, since the call to add has not been unfolded. Luckily, this strategy
can be easily refined, e.g., by introducing an unfolding operator that selects
the leftmost atom that is not a variant of a previously unfolded atom in the
same derivation (a well-known unfolding strategy in the partial evaluation
literature). In this way, we can obtain the much simpler closed SLD tree
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(success)
τ [true] −→ τ [true]

(failure)
G 6≡ true and 6 ∃G′ such that G ;P,R,σ G

′

τ [G] −→ τ [fail ]

(subsumption)

∃G′ ∈ τ : G′ →+ G in τ includes at least one unfolding step
and Gρ = G′ with ρ a renaming substitution

τ [G] −→ τ [G→sub
(G′,ρ) true]

(flattening)
depth(G) > d and flat(G, d) = (θ,G′)

τ [G] −→ τ [G→flat θ̂ ∧G′]

(splitting)
G ≡ a1 ∧ · · · ∧ an, n > c ≥ 1, and splitτ (G, c) = {{G1, . . . , Gn}}

τ [G] −→ τ [G→split G1, . . . , G→split Gn]

(unfolding)
G ;P,R,σ1 G1, . . . , G ;P,R,σn Gn

τ [G] −→ τ [G→unf
(P,R,σ1) G1, . . . , G→unf

(P,R,σn) Gn]

Figure 10: Closed SLD trees using depth-k abstraction w.r.t. (c, d)

shown in Fig. 12. The nice thing with this tree is that there are no splitting
steps and, therefore, both the success set and the calls are preserved (consid-
ering the same computation rule in the original SLD tree, i.e., selecting first
add and then ilist). Moreover, partial evaluation may produce an optimal
residual program from this tree:7

inc([ ], s(0), [ ]).
inc([X|R], s(0), [s(X)|RI]) ← inc(R, s(0), RI).

Example 27 (program comprehension and debugging). Our last ex-
ample shows the application of our framework to detect an error in a program.

7Actually, the second term, s(0), would also be deleted from the atoms by renaming.
We skip this step for simplicity.
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i(A, s(0), C)
{A 7→[],C7→[]}

unfyyrrrrrrrrr {A 7→[X|R],C7→[XI|RI]}
unf ++VVVVVVVVVVVVVVVV

true i(R, s(0), RI) ∧ a(s(0), X, XI)

{R 7→[],RI7→[]} unf

rreeeeeeeeeeeeeeeeeeeeeeeee
{R7→[X′|R′],RI7→[XI′|RI′]}unf

��
a(s(0), X, XI)

unf {XI7→s(X)}
��

i(R′, s(0), RI′) ∧ a(s(0), X′, XI′) ∧ a(s(0), X, XI)

split
��

split
++VVVVVVVVVVVVVVVV

true i(R′, s(0), RI′) ∧ a(s(0), X′, XI′)

sub(i(R,s(0),RI) ∧ a(s(0),X,XI),ρ2)
��

a(s(0), X, XI)

sub (a(s(0),X,XI),ρ3)
��

true true

Figure 11: Closed SLD tree for ilist(X, Y) with Pilist using depth-k abstraction.

i(A, s(0), C)
{A7→[],C 7→[]}

unfyyrrrrrrrrr {A7→[X|R],C 7→[XI|RI]}
unf **UUUUUUUUUUUUU

true i(R, s(0), RI) ∧ a(s(0), X, XI)

{XI7→s(X)}unf
��

i(R, s(0), RI)

sub (i(A,s(0),C),ρ1)
��

true

Figure 12: Refined closed SLD tree for ilist(X, Y) with Pilist using depth-k abstraction.

Consider the following logic program Pmax to compute the maximum of a list:

max([X|R], Y) ← max(R, X, Y). max([], M, M).
max([X|R], M, Y) ← g(X, M) ∧ max(R, X, Y).
max([X|R], M, Y) ← l(X, M) ∧ max(R, M, Y).

g(s(X), 0). l(0, s(X)).
g(s(X), s(Y)) ← g(X, Y). l(s(X), s(Y)) ← l(X, Y).

and an initial goal of the form max(L, M). For simplicity, we only show the
subtree starting with G ≡ g(X, M) ∧ max(R, X, Y) in Figure 13, where a leftmost
selection strategy is considered. By also considering the subtree for G′ ≡
l(X, M) ∧ max(R, X, Y) which is rather similar, we get the following success set
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g(X, M) ∧ max(R, X, Y)
{X7→s(X′),M7→0}

unfxxpppppppp {X7→s(X′),M7→s(M′)}
unf ++WWWWWWWWWWWWW

true g(X′, M′) ∧ max(R, s(X′), Y)

flat
��

g(X′, M′) ∧ X′′ = s(X′) ∧ max(R, X′′, Y)

splitssggggggggggggggg

split ++WWWWWWWWWWWWW

X′′ = s(X′)
{X′′ 7→s(X′)}

��

g(X′, M′) ∧ max(R, X′′, Y)

sub (g(X,M) ∧ max(R,X,Y),ρ)
��

true true

Figure 13: Fragment of a closed SLD tree for max(L, M) with Pmax using depth-k abstraction.

equations:

FG = {X 7→ s(X′), M 7→ 0}
+ {X 7→ s(X′), M 7→ s(M′)} · ({X′′ 7→ s(X′)} ⇑ {ρ · FG})

FG′ = {X 7→ 0, M 7→ s(M′)}
+ {X 7→ s(X′), M 7→ s(M′)} · ({X′′ 7→ s(X′)} ⇑ {ρ′ · FG′})

Now, just by inspecting these equations, one can easily infer that the pro-
gram is incorrect since it does not consider the case when there are repeated
elements in the list, as can be seen by looking at the base cases of these
equations. Actually, the solutions have the form:

FG = {{X 7→ s(X′), M 7→ 0}, {X 7→ s(s(X′′)), M 7→ s(0)}, . . .}
FG′ = {X 7→ 0, M 7→ s(M′)}, {X 7→ s(0), M 7→ s(s(M′′))}, . . .}

5. Test Case Generation

In this section, we present a test case generation procedure based on the
construction of closed SLD trees. For this purpose, we consider an extension
of the depth-k strategy presented in Section 4.2. Moreover, we do not follow
the standard leftmost computation rule, but introduce a more refined unfold-
ing rule based on homeomorphic embedding. Intuitively, we say that atom
ai embeds atom aj, denoted by ai � aj, when aj can be obtained from ai by
deleting symbols (see [21] for a survey on the use of embedding for ensuring
termination in online partial evaluation).
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Definition 28 (homeomorphic embedding). The homeomorphic embed-
ding relation � is defined as the smallest relation satisfying x � y for all
x, y ∈ V , and s ≡ f(s1, . . . , sm) � g(t1, . . . , tn) ≡ t, if and only if

1. f ≡ g (with m = n) and si � ti for all i = 1, . . . , n or
2. sj � t, for some j, 1 ≤ j ≤ m.

For instance, p(f(X), h(a, b)) embeds p(X, a), but p(f(X), h(a, b)) does not
embed p(X, f(a)).

Definition 29 (covering ancestors [11]). Given an SLD resolution step

a1 ∧ · · · ∧ ai ∧ · · · ∧ an ;σ (a1 ∧ · · · ∧ ai−1 ∧ a
′
1 ∧ · · · ∧ a′m ∧ ai+1 ∧ · · · ∧ an)σ

with selected atom ai using clause a ← a′1, . . . , a
′
m, σ = mgu(ai = a), we

say that ai is the parent of atoms a′1σ, . . . , a
′
mσ in this step. The ancestor

relation is just the transitive closure of the parent relation.
The covering ancestors of a query atom in an SLD derivation is the subset

of its ancestors with the same predicate symbol.

Here, we consider an unfolding rule that takes a goal and applies an SLD
resolution step by selecting the leftmost atom that does not embed a covering
ancestor. This strategy is terminating by Kruskal theorem [20]; eventually,
all goals are successful, a failure, or they contain no selectable atom (because
all of them embed a previously selected atom). We formalize this unfolding
strategy as follows (analogously to, e.g., [11]):

Definition 30 (unfolding strategy,
�
;). Let P be a program and G0 ;∗

θ

Gn be an SLD derivation such that Gn ; Gn+1 for some computation rule

(i.e., Gn is not the end of the derivation). Then, we have Gn
�
;σ Gn+1 if

the SLD resolution step Gn ;P,R,σ Gn+1 holds for some computation rule R
and the selected atom, a, is the leftmost atom such that there is no covering
ancestor b in G0 ;∗

θ Gn with a� b (if any).

It is not difficult to prove (e.g., from the results in [11]) that our unfolding
strategy guarantees that the number of unfolding steps in a derivation is
finite.

Regarding splitting, we follow the approach of [35, 36] that is based on
identifying non-regular predicates to determine when splitting is required
to ensure termination. For this purpose, a syntactic characterization that
allows us to identify which predicate calls might give rise to infinitely growing
conjunctions is introduced. In the following, we say that the call graph of
a program P is a directed graph that contains the predicate symbols of P
as vertices and an edge from predicate p/n to predicate q/m for each clause
p(t1, . . . , tn)← body and atom q(s1, . . . , sm) of body.
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Definition 31 (strongly regular logic programs [35]). Let P be a logic
program and let CG1, . . . , CGn be the strongly connected components (SCC)
in the call graph of P . We say that P is strongly regular if there is no clause
p(t1, . . . , tn) ← body such that body contains two atoms q(s1, . . . , sm) and
r(l1, . . . , lk) such that q/m and r/k belong to the same SCC of p/n.

Intuitively speaking, strongly regular programs cannot produce infinitely
growing conjunctions in an extended SLD tree if the usual dynamic com-
putation rules are considered (like the one above which is based on unfolding
the leftmost atom that does not embed a previously unfolded atom).

When a program P is not strongly regular, we identify the predicates that
are responsible for violating the strongly regular condition: a predicate p/n
is non-regular if there is a clause p(t1, . . . , tn)← body and body contains two
atoms with predicates q/m and r/k that belong to the same SCC of p/n.

Example 32. Consider the following Prolog program (from the DPPD li-
brary [22]):

applast(L,X,Last) :- append(L,[X],LX), last(Last,LX).

last(X,[X]).

last(X,[H|T]) :- last(X,T).

append([],L,L).

append([H|L1],L2,[H|L3]) :- append(L1,L2,L3).

Here, there are three SCCs, {applast/3}, {append/3} and {last/2}, but
no clause violates the strongly regular condition. In contrast, the following
program (also from the DPPD library [22]):

flipflip(XT,YT) :- flip(XT,TT), flip(TT,YT).

flip(leaf(X),leaf(X)).

flip(tree(L,I,R),tree(FR,I,FL)) :- flip(L,FL), flip(R,FR).

is not strongly regular. Here, we have two SCCs, {flipflip/2} and {flip/2},
and the second clause of flip/2 violates the strongly regular condition. As
a consequence, we have that flip/2 is a non-regular predicate.

The splitting operator then proceeds as follows:

Definition 33 (regular splitting [35]). Let G be a goal and p a partition
function with p(G) = {{G1, . . . , Gn}}, n ≥ 1. Let S be a set of non-regular
predicates. We say that the sequence of subgoals G1, . . . , Gn is a regular split-
ting of G, in symbols {{G1, . . . , Gn}} ∈ splitS(G), if the following conditions
hold:
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(success)
τ [true] −→ τ [true]

(failure)
G 6≡ true and 6 ∃G′ such that G ;P,R,σ G

′

τ [G] −→ τ [fail ]

(subsumption)

∃G′ ∈ τ : G′ →+ G in τ includes at least one unfolding step
and Gρ = G′ with ρ a renaming substitution

τ [G] −→ τ [G→sub
(G′,ρ) true]

(unfolding)
G

�
;σ1 G1, . . . , G

�
;σn Gn, n > 0

τ [G] −→ τ [G→unf
(P,R,σ1) G1, . . . , G→unf

(P,R,σn) Gn]

(flattening)
depth(G) > d and flat(G, d) = (θ,G′)

τ [G] −→ τ [G→flat θ̂ ∧G′]

(splitting)
{{G1, . . . , Gn}} ∈ splitS(G)

τ [G] −→ τ [G→split G1, . . . , G→split Gn]

Figure 14: Closed SLD trees using depth-k abstraction and regular splitting

• every goal Gi contain at least one atom;

• every goal Gi contains at most one call to a non-regular predicate in S.

In general, there might be more than one regular splitting for a given goal.
Here, we consider that splitS(G) returns any of them.8

The construction of closed SLD trees—using a maximum depth d and a set
of non-regular predicates S—is formalized in Fig. 14.

As usual, we assume that the rules are tried by following a textual order
and discarding the application of all the other rules as soon as a rule is
applicable. Observe that the unfolding rule appears now before flattening
and splitting. This is safe since the unfolding rule of Definition 30 does
not allow infinite derivations. Therefore, in this calculus we might have
longer “standard” SLD derivations, so that flattening and/or splitting is only
applied when it is required to ensure termination.

8In the implemented tool, we just traverse G from left to right and start a new subgoal
every time a call to a non-regular predicate in S is found.
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On top of this algorithm for constructing closed SLD trees, we have im-
plemented a test case generation procedure. Basically, given an initial goal
G, it proceeds as follows:

• The closed tree is explored following a depth-first strategy.

• Every time a non-failing leafG′ is reached, if the pathG→+
θ G

′ includes
no splitting steps, we output a test case Gθγ, where γ is a substitution
that grounds the input parameters of the predicate (according to some
mode). The additional grounding provided by γ is required if we are
interested in terminating test cases (assuming that those goals with
ground input arguments always terminate, a reasonable assumption).
Note that subsumption steps are not followed, i.e., goals that are re-
duced by subsumption are considered leaves too. This is sensible in our
context since considering the rest of the derivation will not produce test
cases covering additional clauses.

• When a splitting step is performed, say we have G →∗σ G′ and then
G′ →split G′1,. . .G′ →split G′n, we only return a test case Gθγ when we
have computed substitutions σ1,. . . ,σn for G′1, . . . , G

′
n, σ1 ⇑ · · · ⇑ σn 6=

fail , and θ = σ · (σ1 ⇑ · · · ⇑ σn), where γ is a grounding substitu-
tion as before. The different combinations are explored using Prolog’s
backtracking mechanism.

The implemented prototype tool is publicly available through a web interface
from http://kaz.dsic.upv.es/tcgen.html. In the current version, the
user should provide a logic program, an initial goal (typically with variable
arguments in order to test all possibilities), the maximum term depth (in
principle, a value between 1 and 3 should be fine in most examples), and the
set of non-regular predicates. The grounding substitution is not computed
by the tool, but should be trivial to produce: replacing all variables in input
arguments by fresh constants will suffice.

To the best of our knowledge, previous approaches (e.g., [4, 17]) to test
case generation based on partial evaluation, the closest to our approach, do
not claim full coverage w.r.t. any coverage criteria. In contrast, our approach
is a good starting point to ensure full coverage in the sense that—as a con-
sequence of Theorem 19—the execution of the generated test cases will use
all the clauses that are reachable in any successful execution of the program.
Of course, we might produce test cases that do not produce a successful
computation (e.g., because a non-leftmost unfolding is used in the construc-
tion of closed SLD trees) and it might also happen that some test cases are
redundant or cover the same clauses more than once.
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Nevertheless, our purpose in this section was to illustrate a promising
application of closed SLD trees. Extending the tool for dealing with full
Prolog, defining refined strategies that minimize the number of test cases
while still ensuring full coverage, etc., is out of the scope of this paper, and
is the subject of ongoing work.

6. Related Work

The operations of unfolding, flattening, splitting and subsumption have
been already used—perhaps with a different formulation from that in this
paper—in a number of program analysis and transformation techniques. We
first present an overview of these operators in the literature:

• Unfolding is a fundamental operation based on applying SLD resolution
[24]. Unfolding is also an essential component of many program trans-
formation strategies and, particularly, of the fold/unfold framework
(see [30] and references therein). Also, refined unfolding operators that
take the history (i.e., the previously unfolded atoms in the SLD tree)
into account in order to preserve termination can be found, e.g., in
[12, 21]. We make no particular assumption on unfolding and, thus,
refined unfolding operators can also be applied in our setting.

• Flattening is a well-known operation in functional logic programming
[18], where it has been used to transform functional programs into
Prolog programs by flattening nested function calls. Basically, for each
conditional equation of the form l = r ⇐ s1 = t1, . . . , sn = tn, if
r contains nested function calls, e.g., f(g(X), Y ), we replace it with
f(Z, Y ), where Z is a fresh variable, and then add the equation g(X) =
Z to the conditional part. Equations in the condition are flattened
analogously. Similar flattening procedures have been used, e.g., in [6,
7, 33] to implement functional logic languages via SLD-resolution. Our
flattening operation is the natural extension of this notion of flattening
to logic programs.

• Subsumption, in our framework, amounts to considering that goal vari-
ants are computationally equivalent. As mentioned in the paper, this
result is formalized, e.g., in Corollary 3.19 in [5], where the notion of
similar SLD derivations is introduced. In partial evaluation, however,
all instances of a goal are also considered subsumed [25]. In contrast,
in our framework, a similar effect can be achieved by first applying flat-
tening and then splitting and subsumption. We prefer to keep these
operations independent so that the resulting framework is more flexible
and customizable.
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• Finally, goal splitting has been more recently introduced in [23, 14] in
the context of so-called conjunctive partial evaluation. Our definition of
splitting is very general but the refined algorithms in [14] for computing
the best splitting (in the sense of minimizing the loss of information)
would also be applicable in our setting.

On the other hand, the idea of constructing a finite (possibly approximate)
search space of a goal is pervasive among the areas of program analysis and
transformation. There are, however, a number of differences w.r.t. previous
approaches. Let us consider in the following the closest ones.

Firstly, OLDT resolution, introduced by Tamaki and Sato [34], aims at
defining a complete (and, for programs defining finite relations only, ter-
minating) refinement to SLD. OLDT is based on tabulation, so that calls
are stored in a table, together with the answers produced so far; in this
way, repeated evaluation of the same atom may only involve a table lookup
rather than applying SLD resolution once and again. Although we share
some similarities with OLDT, there are also notable differences. On the one
hand, OLDT only guarantees completeness and termination for finite-model
programs [34, Theorem 4.3]; indeed, [34] presents no result regarding the
finiteness of OLDT trees (despite the fact that a depth-k abstraction is part
of their technique), while we have presented several strategies that guarantee
the construction of complete and finite closed SLD trees. More importantly,
in comparison to OLDT, our approach is more declarative, since we have a
notion of closed SLD tree that is independent of a particular strategy; in
contrast, the definition of OLDT resolution already includes a particular ab-
straction strategy (analogous to our depth-k abstraction). Furthermore, we
clearly distinguish two separate stages: construction of a closed SLD tree,
and extraction of computed answers. These two stages are combined in [34],
so OLDT trees are in general more complex than our closed SLD trees.

Secondly, in contrast to many static analyses based on abstract inter-
pretation, our approach implies no approximation at the level of computed
answers, i.e., both an infinite SLD tree and an associated closed SLD tree
still represent the same computed answers. In some sense, our closed SLD
trees are in between the original source program and a standard SLD tree.
The better the precision, the closer to the standard SLD tree. A related tech-
nique is the construction of justifications in tabled logic programming [31].
However, justifications aim at explaining successful/failing SLD derivations
rather than representing the computed answer substitutions, as our closed
SLD trees do. In particular, cyclic paths in the graph of a justification are
not relevant for successful derivations, while cycles are essential in our closed
SLD trees.
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The fold/unfold framework (see, e.g., [30]) also shares some similarities
with our work. On the one hand, this framework considers many elemental
transformation rules, in particular including the ones that we have in our
framework (or slight variations). Therefore, the fold/unfold framework is
more general, and both our approach and standard partial evaluation can
be seen as instances. However, this generality comes with a price: the
fold/unfold framework usually requires some user interaction. Actually, our
approach (as well as partial evaluation and many other related techniques)
can be seen as particular strategies within the fold/unfold framework that
are amenable to full automation.

The closest approach is of course that of partial evaluation of logic pro-
grams [25] and, particularly, a generalization known as conjunctive partial
evaluation [23, 14]. Basically, conjunctive partial evaluation in logic pro-
gramming aims at finding a sequence of goals G = {G1, . . . , Gn} and a se-
quence of associated finite (possibly partial) SLD trees τ1, . . . , τn for the ini-
tial goals G1,. . . ,Gn, such that every leaf in these trees is either successful, a
failure, or only contains conjunctions that are instances of the conjunctions
in G; this is called the closedness condition, and guarantees the correctness of
conjunctive partial evaluation. The partially evaluated program is obtained
by producing a clause—called a resultant—of the form Giθ ← G for each
SLD derivation Gi ;θ G in τi, i = 1, . . . , n. In contrast to the original
definition of partial evaluation in logic programming (where renaming of re-
sultants is not always required), every resultant Giθ ← G is finally renamed
to renG(Giθ)← renG(G) so that renG(Giθ) becomes an atom.

In practice, however, the process starts with a program P and an initial
goal G. The key issue is then: how can we obtain a set of goals {G1, . . . , Gn}
and a set of finite SLD trees τ1, . . . , τn, so that G is an instance of some Gi,
i ∈ {1, . . . , n}, and the closedness condition holds? For this purpose, two
operations are fundamental:

• Splitting. In general, the number of atoms in the goals of the SLD
trees might keep growing and, thus, we need to split these goals into
shorter conjunctions. By setting a bound on the number of atoms, we
can avoid this source of non-termination.

• Abstraction. Even if the size of conjunctions is bounded, one can still
have infinitely many conjunctions so that every new conjunction is
not an instance of (i.e., closed with) any previous conjunction. Here,
an abstraction operator (usually based on the notion of most specific
generalization) is required. For instance, one can replace a conjunction
by another one which is more general.
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Given a program P and an initial goal G, typical algorithms usually proceeds
as follows:

1. Initialization: G0 = {G}, i = 1.

2. Repeat

(a) compute finite (possibly incomplete) SLD trees for the goals of Gi;
(b) for each leaf in these trees that is not closed: apply splitting and/or

abstraction (if termination cannot be guaranteed) and add the
results to Gi thus producing a new set Gi+1.

3. Until Gi = Gi+1.

Stage 2(a) is called the local level and ensuring that SLD trees are finite
is known as the local termination problem. For this purpose, one can use
some well-founded or well-quasi ordering [12, 21]. This problem is not critical
since stopping the construction of the SLD tree at any arbitrary point is still
correct (though the quality of the specialization might vary). Stage 2(b)
is called the global level and ensuring that the number of iterations is kept
finite is known as the global termination problem. Here, some ordering is
also used to detect a potential source of non-termination, as in the local
level. This problem, however, is critical since the iterations cannot be simply
stopped because the resulting partial evaluation would not be closed and,
thus, it would be incorrect. Here, splitting and abstraction are necessary, as
mentioned before.

The first stage of conjunctive partial evaluation, i.e., the construction of
the (possibly incomplete) SLD trees so that the closedness condition holds,
can be recast in our setting as follows:

• Given a program P and a goal G, we start by constructing a first SLD
tree τ as in step 2(a) above.

• Then, for each leaf in τ which is closed w.r.t. G (i.e., which an in-
stance of G), we apply flattening and splitting so that a variant of G
is obtained.

• For each non-closed leaf, we apply the same splitting steps as in step
2(b). Abstraction steps, in turn, can be mimicked by flattening and
splitting so that a more general goal is obtained.

• In this way, rather than a new set of goals, we produce an extended
SLD tree whose frontier contains either leaves (a success, a failure or a
variant of a previous goal) or new goals that should be further evalu-
ated.
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The process follows along the same lines starting now from the goals that
require further evaluation.

Basically, rather than constructing a collection of independent SLD trees,
in our approach we build a single (extended) SLD tree so that the relation
between these trees (and the initial goal) is made explicit. Hence, our for-
mulation is conceptually clearer since a single evaluation tree (basically an
SLD tree) is built. Moreover, besides partial evaluation, other applications
are possible (like, e.g., program comprehension, model checking or test case
generation).

Finally, some of the ideas in this paper can also be found in our previous
work [37, 26], where rewrite systems are considered instead. However, besides
the paradigm shift, which is not trivial at all,9 in this paper we also introduce
a new, parametric notion of closed SLD tree (i.e., the notion of extended SLD
tree that includes all possible closed SLD trees, which are then built using
particular strategies); moreover, we also prove some new properties for our
closed SLD trees and introduce novel specific strategies with different levels
of abstraction for their construction.

7. Concluding Remarks

We have introduced in this paper the notion of a closed SLD tree, a par-
ticular extension of SLD trees that are always finite. These trees are built
using the basic operations of unfolding, flattening, splitting, and subsump-
tion. We have proved some basic properties for closed SLD trees, namely
that the computed answers are preserved and, when the same computation
rule is considered, the call patterns are also preserved (though possibly less
instantiated). Moreover, an equational representation of the success set can
be obtained from a closed SLD tree, which might be useful, e.g., for program
comprehension. We have introduced some concrete strategies for building
closed SLD trees and have shown its application through some examples.
Finally, we have illustrated the usefulness of our approach by introducing a
simple test case generator.

As for future work, we consider the improvement of the test case generator
presented in Section 5. Another challenging topic for future work is the
definition of an abstract-check-refine strategy similar to that commonly used
in model checking techniques (see, e.g., [19]). In this context, one starts
with a simple strategy (say, maximal abstraction) and, then, checks if some
undesirable error happens in the closed SLD tree. If the tree is error-free,

9Actually, considering logic programs would correspond to dealing with conditional
term rewrite systems, while [26] only considers unconditional ones.
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the process stops successfully. Otherwise, one tries to check if the error is
a real one or a false positive. In the second case, one should consider a
more accurate, refined abstraction, and then the same process starts again.
Here, the challenge is being able to construct the refined closed SLD tree
incrementally rather than doing it from scratch. Compositionality is a nice
property that may help in this task.
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[16] J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, C. Fuhs, Symbolic
evaluation graphs and term rewriting: a general methodology for ana-
lyzing logic programs, in: PPDP’12, ACM, 2012, pp. 1–12.
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