
Explaining Explanations in
Probabilistic Logic Programming⋆

Germán Vidal[0000−0002−1857−6951]

VRAIN, Universitat Politècnica de València, Spain
gvidal@dsic.upv.es

Abstract. The emergence of tools based on artificial intelligence has
also led to the need of producing explanations which are understandable
by a human being. In most approaches, the system is considered a black
box, making it difficult to generate appropriate explanations. In this work,
though, we consider a setting where models are transparent : probabilistic
logic programming (PLP), a paradigm that combines logic programming
for knowledge representation and probability to model uncertainty. How-
ever, given a query, the usual notion of explanation is associated with a
set of choices, one for each random variable of the model. Unfortunately,
such a set does not explain why the query is true and, in fact, it may
contain choices that are actually irrelevant for the considered query. To
improve this situation, we present in this paper an approach to explain-
ing explanations which is based on defining a new query-driven inference
mechanism for PLP where proofs are labeled with choice expressions, a
compact and easy to manipulate representation for sets of choices. The
combination of proof trees and choice expressions allows us to produce
comprehensible query justifications with a causal structure.

(*) This version of the contribution has been accepted for publi-
cation at APLAS 2024, after peer review, but is not the Version
of Record and does not reflect post-acceptance improvements,
or any corrections. The Version of Record of this contribution
is published in Programming Languages and Systems (Proceed-
ings of APLAS 2024), Springer, 2024, and is available online at
https://doi.org/10.1007/978-981-97-8943-6_7. Use of this Ac-
cepted Version is subject to the publisher’s Accepted Manuscript
terms of use https://www.springernature.com/gp/open-research/
policies/accepted-manuscript-terms.

1 Introduction

Explainable AI (XAI) [5] is an active area of research that includes many differ-
ent approaches. Explainability is especially important in the context of decision
⋆ This work has been partially supported by grant PID2019-104735RB-C41 funded by

MICIU/AEI/ 10.13039/501100011033, by the Generalitat Valenciana under grant
CIPROM/2022/6 (FassLow), and by TAILOR, a project funded by EU Horizon
2020 research and innovation programme under GA No 952215.

https://doi.org/10.1007/978-981-97-8943-6_7
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

2 G. Vidal

support systems, where the user often demands to know the reasons for a deci-
sion. Furthermore, the last regulation on data protection in the European Union
[12] has introduced a “right to explanation” for algorithmic decisions.

The last decades have witnessed the emergence of a good number of propos-
als to combine logic programming and probability, e.g., Logic Programs with
Annotated Disjunctions (LPADs) [40], CP-logic [39], ProbLog [27], Probabilistic
Horn Abduction [24], Independent Choice Logic [25], PRISM [37], Stochastic
Logic Programs [20], and Bayesian Logic Programs [16], to name a few (see,
e.g., the survey [34] and references therein). Most of these approaches are based
on the so-called distribution semantics introduced by Sato [36]. In this work, we
mainly follow the LPAD [40] approach to probabilistic logic programming (PLP),
which has an expressive power similar to, for example, Bayesian networks [32].
For instance, the following probabilistic clause:

heads(X) :0.5; tails(X) :0.5← toss(X),¬biased(X).

specifies that every time a coin X which is not biased is tossed, it lands on
heads with probability 0.5 and on tails with probability 0.5. Note that only one
choice can be true for a given X (thus “ ;” should not be interpreted as logical
disjunction). One can say that each instance of the clause above represents a
random variable with as many values as head disjuncts (two, in this case).

Given a program, a selection is basically a choice of values for all the random
variables represented in a probabilistic logic program. Every selection induces a
possible world, a normal logic program which is obtained by choosing the head
determined by the selection in each grounding of each probabilistic clause (and
removing its probability). For example, given an instance of the clause above for
X = coin1, a selection that chooses heads(coin1) will include the normal clause

heads(coin1)← toss(coin1),¬biased(coin1).

In this context, an explanation often refers to a selection or, equivalently, to the
world induced from it. For instance, the MPE task [38], which stands for Most
Probable Explanation, basically consists in finding the world with the highest
probability given a query (typically denoting a set of observed evidences).

A world can be seen indeed as an interpretable model in which a given query
holds. However, this kind of explanations also presents several drawbacks. First,
a world might include clauses which are irrelevant for the query, thus adding
noise to the explanation. Second, the chain of inferences that proved the query
is far from obvious from the explanation (i.e., from the given world). In fact,
there can be several different chains of inferences that explain why the query
is true, each with an associated probability. Finally, a world (a set of clauses)
might be too technical an explanation for non-experts.

Alternatively, some work considers that an explanation for a query is given
by a set of choices: those that are necessary to prove the query (see, e.g., [30]).
Although in this case there is no irrelevant information, it still does not have
a causal structure. Furthermore, a set of choices does not provide an intuitive

Explaining Explanations in Probabilistic Logic Programming 3

explanation about why the query holds. In order to explain explanations, we pro-
pose in this work a combination of proof trees—that show the chain of inferences
used to prove a query—and a new representation for choices that gives rise to a
more compact notation. For this purpose, we make the following contributions:

– First, we introduce an algebra of choice expressions, a new notation for
representing sets of choices that can be easily manipulated using standard
rules like distributivity, double negation elimination, De Morgan’s laws, etc.

– Then, we present SLPDNF-resolution, a query-driven top-down inference
mechanism that extends SLDNF-resolution to deal with LPADs. We prove
its soundness and completeness regarding the computation of explanations.

– Finally, we show how the proofs of SLPDNF-resolution can be used to pro-
duce comprehensible representations of the explanations of a query, which
might help the user to understand why this query is indeed true.

We note that a practical evaluation of the proposed techniques will require the
design and implementation of a software tool for generating explanations, which
is left as future work.

Proofs of technical results can be found in the appendix.

2 Some Concepts of Logic Programming and PLP

In this section, we introduce some basic notions of logic programming [1,18] and
probabilistic logic programming [34].

2.1 Logic Programming

We consider a function-free first-order language with a fixed vocabulary of pred-
icate symbols, constants, and variables denoted by Π, C and V, respectively. An
atom has the form f(t1, . . . , tn) with f/n ∈ Π and ti ∈ (C ∪ V) for i = 1, . . . , n.
A literal l is an atom a or its negation ¬a. A query Q is a conjunction of liter-
als,1 where the empty query is denoted by 2. We use capital letters to denote
(possibly atomic) queries. A clause has the form h← B, where h (the head) is a
positive literal (an atom) and B (the body) is a query; when the body is empty,
the clause is called a fact and denoted just by h; otherwise, it is called a rule. A
(normal) logic program P is a finite set of clauses.

We let var(s) denote the set of variables in the syntactic object s, where s
can be a literal, a query or a clause. A syntactic object s is ground if var(s) = ∅.
Substitutions and their operations are defined as usual, where Dom(σ) = {x ∈
V | σ(x) ̸= x} is called the domain of a substitution σ. We let id denote the
empty substitution. The application of a substitution θ to a syntactic object s is
usually denoted by juxtaposition, i.e., we write sθ rather than θ(s). A syntactic
object s1 is more general than a syntactic object s2, denoted s1 ⩽ s2, if there
exists a substitution θ such that s1θ = s2. A variable renaming is a substitution
1 As is common in logic programming, we write a query l1∧ l2∧ . . .∧ ln as l1, l2, . . . , ln.

4 G. Vidal

that is a bijection on V. A substitution θ is a unifier of two syntactic objects
s1 and s2 iff s1θ = s2θ; furthermore, θ is the most general unifier of s1 and s2,
denoted by mgu(s1, s2) if, for every other unifier σ of s1 and s2, we have that
θ ⩽ σ,2 i.e., there exists a substitution γ such that θγ = σ when the domains
are restricted to the variables of var(s1) ∪ var(s2).

In this work, we consider negation as failure [11] and SLDNF-resolution [3].
We say that a query Q = l1, . . . , ln resolves to Q′ via σ with respect to literal li
and clause c, in symbols Q ;σ Q′, if either i) h← B is a renamed apart variant
of c, σ = mgu(li, h), and Q′ = (l1, . . . , li−1, B, li+1, . . . , ln)σ, or ii) li is a negative
literal, σ = id , and Q′ = l1, . . . , li−1, li+1, . . . , ln. A (finite or infinite) sequence of
resolution steps of the form Q0 ;σ1

Q1 ;σ2
. . . is called a pseudoderivation. As

we will see below, an SLDNF-derivation is a pseudoderivation where the deletion
of negative (ground) literals is justified by a finitely failed SLDNF-tree.

An SLDNF-tree Γ is given by a triple (T , T, subs), where T is a set of trees,
T ∈ T is called the main tree, and subs is a function assigning to some nodes of
trees in T a (subsidiary) tree from T . Intuitively speaking, an SLDNF-tree is a
directed graph with two types of edges, the usual ones (associated to resolution
steps) and the ones connecting a node with the root of a subsidiary tree. A
node can be marked with failed, sucess, and floundered. A tree is successful if it
contains at least a leaf marked as success, and finitely failed if it is finite and all
leaves are marked as failed.

Given a query Q0, an SLDNF-tree for Q0 starts with a single node labeled
with Q0. The tree can then be extended by selecting a query Q = l1, . . . , ln
which is not yet marked (as failed, success or floundered) and a literal li and
then proceeding as follows:

– If li is an atom, we add a child labeled with Q′ for each resolution step
Q ;σ Q′. The query is marked as failed if no such resolution steps exist.

– If li is a negative literal, ¬a, we have the following possibilities:
• if a is nonground, the query Q is marked as floundered ;
• if subs(Q) is undefined, a new tree T ′ with a single node labeled with a

is added to T and subs(Q) is set to the root of T ′;
• if subs(Q) is defined and the corresponding tree is successful, then Q is

marked as failed.
• if subs(Q) is defined and the corresponding tree is finitely failed, then we

have Q ;id Q′, where Q′ is obtained from Q by removing literal li.

Empty leaves are marked as success. The extension of an SLDNF-tree continues
until all leaves of the trees in T are marked.3 An SLDNF-tree for a query Q is an
SLDNF-tree in which the root of the main tree is labeled with Q. An SLDNF-
tree is called successful (resp. finitely failed) if the main tree is successful (resp.
finitely failed). An SLDNF-derivation for a query Q is a branch in the main tree
of an SLDNF-tree Γ for Q, together with the set of all trees in Γ whose roots can
2 Here, we assume that Dom(θ) ⊆ var(s1) ∪ var(s2) if mgu(s1, s2) = θ.
3 In [3] only the limit of the sequence of trees is called an SLDNF-tree, while the pre-

vious ones are called pre-SLDNF-trees. We ignore this distinction here for simplicity.

Explaining Explanations in Probabilistic Logic Programming 5

be reached from the nodes of this branch. Given a successful SLDNF-derivation,
Q0 ;σ1

Q1 ;σ2
. . . ;σn

Qn, the composition σ1σ2 . . . σn (restricted to the
variables of Q0) is called a computed answer substitution of Q0.

A normal logic program is range-restricted if all the variables occurring in
the head of a clause also occur in the positive literals of its body. For range-
restricted programs, every successful SLDNF-derivation completely grounds the
initial query [21].

2.2 Logic Programs with Annotated Disjunctions

We assume that Π = Πp ⊎Πd, the set of predicate symbols, is partitioned into
a set Πp of probabilistic predicates and a set Πd of derived predicates, which
are disjoint. An atom f(t1, . . . , tn) is called a probabilistic atom if f ∈ Πp and
a derived atom if f ∈ Πd. An LPAD P = Pp ⊎ Pd—or just program when no
confusion can arise—consists of a set of probabilistic clauses Pp and a set of nor-
mal clauses Pd defining derived predicates. A probabilistic clause has the form
h1 : p1; . . . ;hn : pn ← B, where h1, . . . , hn are probabilistic atoms, p1, . . . , pn
are real numbers in the interval [0, 1] (their respective probabilities) such that∑n

i=1 pi ⩽ 1, and B is a query. When
∑n

i=1 pi < 1, we implicitly assume that
a special atom none is added to the head of the clause, where none/0 is a fresh
predicate which does not occur in the original program, with associated proba-
bility 1 −

∑n
i=1 pi. Thus, in the following, we assume w.l.o.g. that

∑n
i=1 pi = 1

for all clauses.

Example 1. Consider the following clause4

covid(X) :0.4; flu(X) :0.3← contact(X,Y), covid(Y).

It states that, if X is a contact of Y and Y has covid, then either X has covid
too (probability 0.4) or X has the flu (probability 0.3). Moreover, X has neither
covid nor the flu (i.e., none holds) with probability 0.3 (1− 0.4− 0.3).

Now we consider the semantics of programs. Given a probabilistic clause c =
(h1 : p1; . . . ;hn : pn ← B), each ground instance cθ represents a choice between
n (normal) clauses: (h1 ← B)θ, . . . (hn ← B)θ. A particular choice is denoted
by a triple (c, θ, i), i ∈ {1, . . . , n}, which is called an atomic choice, and has as
associated probability π(c, i), i.e., pi in the clause above. We say that a set κ of
atomic choices is consistent, in symbols, consistent(κ), if it does not contain two
atomic choices for the same grounding of a probabilistic clause, i.e., it cannot
contain (c, θ, i) and (c, θ, j) with i ̸= j. A set of consistent atomic choices is called
a composite choice. It is called a selection when the composite choice includes
an atomic choice for each grounding of each probabilistic clause of the program.
We let SP denote the set of all possible selections for a given program (which is
finite since we consider function-free programs). Each selection s ∈ SP identifies

4 Here and in the remaining examples we do not show the occurrences of none.

6 G. Vidal

a world ωs which contains a (ground) normal clause (hi ← B)θ for each atomic
choice (c, θ, i) ∈ s, together with the clauses for derived predicates:

ωs = {(hi ← B)θ | c = (h1 :p1; . . . ;hn :pn ← B) ∈ Pp ∧ (c, θ, i) ∈ s} ∪ Pd

We assume in this work that programs are sound, i.e., each world has a unique
two-valued well-founded model [14] which coincides with its stable model [15],
and SLDNF-resolution is sound and complete. We write ωs |= Q to denote that
the (ground) query Q is true in the unique model of the program. Soundness
can be ensured, e.g., by requiring logic programs to be stratified [17], acyclic [2]
or modularly acyclic [35]. These characterizations can be extended to LPADs in
a natural way, e.g., an LPAD is stratified if each possible world is stratified.

Given a selection s, the probability of world ωs is then defined as follows:
P (ωs) = P (s) =

∏
(c,θ,i)∈s π(c, i). Given a program P, we let WP denote the

(finite) set of possible worlds, i.e., WP = {ωs | s ∈ SP}. Here, P (ω) defines
a probability distribution over WP . By definition, the sum of the probabilities
of all possible worlds is equal to 1. The probability of a (ground) query Q in a
program P, called the success probability of Q in P, in symbols P (Q), is obtained
by marginalization from the joint distribution P (Q,ω) as follows:

P (Q) =
∑

ω∈WP

P (Q,ω) =
∑

ω∈WP

P (Q|ω) · P (ω)

where P (Q|ω) = 1 if ω |= Q and P (Q|ω) = 0 otherwise. Intuitively speaking,
the success probability of a query is the sum of the probabilities of all the worlds
where this query is provable (equivalently, has a successful SLDNF-derivation).

3 Query-Driven Inference in PLP

In this section, we present our approach to query-driven inference for probabilis-
tic logic programs. In order to ease the understanding, let us first consider the
case of programs without negation. In this case, it suffices to redefine queries to
also include an associated composite choice κ. Intuitively speaking, κ denotes a
restriction on the worlds where the computation performed so far can be proved.

An initial query has thus the form ⟨Q, ∅⟩, where Q is a standard query and ∅
is an empty composite choice. Resolution steps with probabilistic clauses should
update the current composite choice accordingly. For this operation to be well-
defined, computations must be performed w.r.t. the grounding G(P) of program
P (which is finite since the considered language is function-free).5 Given a query
⟨Q, κ⟩, resolution is then defined as follows:6

– If the selected atom is a derived atom and Q ;σ Q′, then ⟨Q, κ⟩;σ ⟨Q′, κ⟩.
5 In practice, given a query, it suffices to compute the relevant groundings of Pp for

this query (see [13, Section 5.1] for a discussion on this topic).
6 For simplicity, we use the same arrow ; for both standard resolution and its ex-

tended version for probabilistic logic programs.

Explaining Explanations in Probabilistic Logic Programming 7

covid(p1)
(c1,{X/p1},1)

vv
(c2,{X/p1,Y/p2},1)

++
pcr(p1)

��

contact(p1, p2), covid(p2)

��
2 covid(p2)

(c1,{X/p2},1)

uu

(c2,{X/p2,Y/p3},1)

((
pcr(p2)

��

...
[failed]

2

Fig. 1. Tree for the query covid(p1)

– If the selected atom is a probabilistic atom, a, then we have a resolution step
⟨Q, κ⟩ ;σ ⟨Q′, κ ∪ {(c, θ, i)}⟩ for each (ground) clause cθ = (h1 :p1; . . . ;hn :
pn ← B)θ ∈ G(P) such that Q ;σ Q′ is a resolution step with respect to
atom a and clause hiθ ← Bθ and, moreover, κ ∪ {(c, θ, i)} is consistent.

Example 2. Consider the following program P:

(c1) covid(X) :0.9← pcr(X).
(c2) covid(X) :0.4; flu(X) :0.3← contact(X,Y), covid(Y).

pcr(p1). pcr(p2). contact(p1, p2). person(p1). person(p2). person(p3).

Here, the grounding G(P) will contain an instance of c1 and c2 for each per-
son p1, p2, and p3. Figure 1 shows the resolution tree for the query covid(p1).
For simplicity, we only considered two groundings for c2: {X/p1, Y/p2} and
{X/p2, Y/p3}; moreover, we always select the leftmost literal in a query. In the
tree, for clarity, we show ordinary queries as nodes and label the edges with the
atomic choices computed in the step (if any).

Here, we have two successful derivations for covid(p1) that compute the com-
posite choices {(c1, {X/p1}, 1)} and {(c2, {X/p1, Y/p2}, 1), (c1, {X/p2}, 1)}, i.e.,
the union of the atomic choices labeling the steps of each root-to-leaf success-
ful derivation. Their probabilities are π(c1, 1) = 0.9 and π(c2, 1) × π(c1, 1) =
0.4 ∗ 0.9 = 0.36, respectively. The computation of the marginal probability of a
query is not generally the sum of the probabilities of its proofs since the associ-
ated worlds may overlap (as in this case). Computing the probability of a query
is an orthogonal issue which is out of the scope of this paper (in this case, the
marginal probability is 0.936); see Section 4 for further details on this topic.

3.1 Introducing Negation

Now, we consider the general case. In the following, we say that a selection s
extends a composite choice κ if κ ⊆ s. Moreover, a composite choice κ identifies
the set of worlds ωκ that can be obtained by extending κ to a selection in all

8 G. Vidal

possible ways. Formally, ωκ = {ωs | s ∈ SP ∧ κ ⊆ s}. Given a set of composite
choices K, we let ωK = ∪κ∈K ωκ.

In principle, we could adapt Riguzzi’s strategy in [30] for ICL (Independent
Choice Logic [25]) to the case of LPAD. Basically, a resolution step for a query
where a negated (ground) literal ¬a is selected could proceed as follows:

– First, as in SLDNF, a tree for query a is built. Assume that the successful
branches of this tree compute the composite choices κ1, . . . , κn, n > 0.

– Then, we know that a succeeds—equivalently, ¬a fails—in all the worlds
that extend the composite choices κ1, . . . , κn. Hence, we calculate a set of
composite choices K that are complementary to those in κ1, . . . , κn.

– If K is not empty, the query where ¬a was selected will have as many children
as composite choices in K. For each child, the negated literal is removed from
the query and the corresponding composite choice is added to the current
one (assuming their union is consistent).

In order to formalize these ideas, we first recall the notion of complement [26]: If
K is a set of composite choices, then a complement of K is a set K ′ of composite
choices such that for all world ω ∈ WP , we have ω ∈ ωK iff ω ̸∈ ωK′ . The notion
of dual [26,30] is introduced to have an operational definition:

Definition 1 (dual). If K is a set of composite choices, then composite choice
κ′ is a dual of K if for all κ ∈ K there exist atomic choices (c, θ, i) ∈ κ and
(c, θ, j) ∈ κ′ such that i ̸= j. A dual is minimal if no proper subset is also a
dual. Let duals(K) be the set of minimal duals of K.

The set of duals is indeed a complement of a set of composite choices (cf.
Lemma 4.8 in [26]). The computation of duals(K) can be carried out using the
notion of hitting set [28]. Let C be a collection of sets. Then, set H is a hitting
set for C if H ⊆

⋃
S∈C S and H ∩ S ̸= ∅ for each S ∈ C. In particular, we only

consider hitting sets where exactly one element of each set S ∈ C is selected
Formally, hits({S1, . . . , Sn}) = {{s1, . . . , sn} | s1 ∈ S1, . . . , sn ∈ Sn}.

In the following, given an atomic choice α, we let α denote the relative comple-
ment (the standard notion from set theory) of {α} w.r.t. the domain of possible
atomic choices for the same (ground) clause, i.e.,

(c, θ, i) = {(c, θ, j) | c = (h1 :p1; . . . ;hn :pn ← B), i ̸= j, j ∈ {1, . . . , n}}

We use α, α′, . . . to denote atomic choices and β, β′, . . . for either standard atomic
choices or their complements. Furthermore, we let K = {κ1, . . . , κn} if K =
{κ1, . . . , κn}, and κ = α1 ∪ . . . ∪ αm if κ = {α1, . . . , αm}. The duals of a set of
composite choices K can then be obtained from the hitting sets of K:

Definition 2 (duals). Let K be a set of composite choices. Then, duals(K) =
mins(hits(K)), where function mins removes inconsistent and redundant compos-
ite choices, i.e., mins(K) = {κ ∈ K | consistent(κ) and κ′ ̸⊂ κ for all κ′ ∈ K}.

It is easy to see that the above definition is more declarative but equivalent to
similar functions in [26,30].

Explaining Explanations in Probabilistic Logic Programming 9

pro(p1)

|| ''

vuln(p1)

(c5,σ,1)

��

young(p1)

(c6,σ,1)

��
ffp2 (p1)

(c3,σ,1)

��

vacc(p1),¬vuln(p1)

(c4,σ,1)

��

¬young(p1)
(c6,σ,2)

��

(c6,σ,3)

��

44

person(p1)

��
person(p1)

��

person(p1),¬vuln(p1)

��

2 2 2

2 ¬vuln(p1)
(c5,σ,2)

ww

(c6,σ,1)

&&

;;

2 2

Fig. 2. Trees for the query protected(p1), where predicates protected, vaccinated, and
vulnerable are abbreviated as pro, vacc, and vuln, respectively.

Example 3. Consider the following LPAD program P:

(c1) covid(X) :0.9← pcr(X).
(c2) covid(X) :0.4; flu(X) :0.3← contact(X,Y), covid(Y),¬protected(X).
(c3) ffp2 (X) :0.3; surgical :0.4; cloth :0.1← person(X).
(c4) vaccinated(X) :0.8← person(X).
(c5) vulnerable(X) :0.6← ¬young(X).
(c6) young(X) :0.2; adult(X) :0.5← person(X).

protected(X)← ffp2 (X).
protected(X)← vaccinated(X),¬vulnerable(X).
pcr(p1). pcr(p2). contact(p1, p2). person(p1). person(p2). person(p3).

The grounding G(P) will contain an instance of clauses c1, . . . , c6 for each person
p1, p2, and p3. As in the previous example, we show ordinary queries as nodes and
label the edges with the new atomic choices of the step (if any). Figure 2 shows
the trees for the query protected(p1). Here, young(p1) has only one successful
derivation with composite choice {(c6, σ, 1)}, where σ = {X/p1}. Let K1 =
{{(c6, σ, 1)}}. In order to resolve ¬young(p1), we compute the duals of K1:

duals(K1) = mins(hits(K1)) = mins(hits({{(c6, σ, 1)}}))
= mins(hits({{(c6, σ, 2), (c6, σ, 3)}})) = {{(c6, σ, 2)}, {(c6, σ, 3)}}

Hence, ¬young(p1) has two children with atomic choices (c6, σ, 2) and (c6, σ, 3).
Consider now vulnerable(p1). The tree includes two successful branches that
compute composite choices {(c5, σ, 1), (c6, σ, 2)} and {(c5, σ, 1), (c6, σ, 3)}. Let K2

be a set with these two composite choices. In order to resolve ¬vulnerable(p1)

10 G. Vidal

in the tree for protected(p1), we first need the duals of K2:

duals(K2) = mins(hits(K2))

= mins(hits({{(c5, σ, 1), (c6, σ, 2)}, {(c5, σ, 1), (c6, σ, 3)}}))
= mins(hits({{(c5, σ, 2), (c6, σ, 1), (c6, σ, 3)}, {(c5, σ, 2), (c6, σ, 1), (c6, σ, 2)}}))
= mins({{(c5, σ, 2)}, {(c5, σ, 2), (c6, σ, 1)}, {(c5, σ, 2), (c6, σ, 2)}, {(c6, σ, 1)},

{(c6, σ, 1), (c6, σ, 2)}, {(c6, σ, 3), (c5, σ, 2)}, {(c6, σ, 3), (c6, σ, 1)},
{(c6, σ, 3), (c6, σ, 2)}}) = {{(c5, σ, 2)}, {(c6, σ, 1)}}

Note that function mins removes redundant composite choices (e.g., all strict su-
persets of {(c5, σ, 2)} and {(c6, σ, 1)}) as well as inconsistent composite choices
like {(c6, σ, 3), (c6, σ, 2)}. Hence, ¬vulnerable(p1) has two children with associ-
ated atomic choices (c5, σ, 2) and (c6, σ, 1).

We do not show the details here but, given the computed composite choices
{(c3, σ, 1)}, {(c4, σ, 1), (c5, σ, 2)}, and {(c4, σ, 1), (c6, σ, 1)} for protected(p1), a
call of the form ¬protected(p1) would have twelve children.

3.2 An Algebra of Choice Expressions

The main drawback of the previous approach is that it usually produces a large
number of proofs (i.e., successful branches), most of them identical except for
the computed composite choice. For instance, as mentioned in Example 3, a
call to ¬protected(p1) will have twelve children. Likewise, a query of the form
¬protected(p1),¬protected(p2) will end up with a total of 144 children, all of
them with a copy of the same query.

Our focus in this work is explainability. Hence, we aim at producing proofs
that are as simple and easy to understand and manipulate as possible. An obvious
first step into this direction could consist in associating a set of composite choices
to each query rather than a single composite choice. In this way, the resolution of
a query with a negative literal would produce a single child with the composition
of the current set of composite choices and those returned by function duals.

For example, the query ¬vulnerable(p1) in the first tree of Figure 2 would
now have the form ⟨¬vulnerable(p1), {{(c4, σ, 1)}}⟩. Given the duals of K2 com-
puted above, duals(K2) = {{(c5, σ, 2)}, {(c6, σ, 1)}}, the child of ¬vulnerable(p1)
would have the following associated set of composite choices:

{{(c4, σ, 1)}} ⊗
{
{(c5, σ, 2)},
{(c6, σ, 1)}

}
=

{
{(c4, σ, 1), (c5, σ, 2)},
{(c4, σ, 1), (c6, σ, 1)}

}
where the operation “⊗” is defined as follows:

K1 ⊗K2 = mins({κ1 ∪ κ2 | κ1 ∈ K1, κ2 ∈ K2}) (1)

However, this approach would only reduce the number of identical nodes in the
tree, but the computed composite choices would be the same as before.

As an alternative, we introduce an algebra of choice expressions, a represen-
tation for sets of composite choices which enjoy several good properties: they
are more compact and can be easily manipulated using well-known logical rules
(distributive laws, double negation elimination, De Morgan’s laws, etc).

Explaining Explanations in Probabilistic Logic Programming 11

Definition 3. A choice expression is defined inductively as follows:

– ⊥ and ⊤ are choice expressions;
– an atomic choice α is a choice expression;
– if C,C′ are choice expressions then ¬C, C∧C′, and C∨C′ are choice expres-

sions too, where ¬ has higher precedence than ∧, and ∧ higher than ∨.

Given a program P, we let CP denote the associated domain of choice expressions
that can be built using the atomic choices of P. We will omit the subscript P in
CP when the program is clear from the context or irrelevant.

A choice expression essentially represents a set of composite choices. E.g., the
expression (α1∧α2)∨α3∨(α4∧α5) represents the set {{α1, α2}, {α3}, {α4, α5}}.
In particular, negation allows us to represent sets of composite choices in a more
compact way. For example, ¬(c3, σ, 1) ∧ ¬(c6, σ, 1) represents a set with 6 com-
posite choices, i.e., all combinations of pairs from {(c3, σ, 2), (c3, σ, 3), (c3, σ, 4)}
and {(c6, σ, 2), (c6, σ, 3)}. The following function γ formalizes this equivalence:

Definition 4. Given a choice expression C ∈ C, we let γ(C) denote the associ-
ated set of composite choices, where function γ is defined inductively as follows:

– γ(⊥) = {}, i.e., ⊥ denotes an inconsistent set of atomic choices.
– γ(⊤) = {{}}, i.e., ⊤ represents a composite choice, {}, that can be extended

in order to produce all possible selections.
– γ(α) = {{α}}.
– γ(¬C) = duals(γ(C)), i.e., ¬C represents a complement of C.
– γ(C1 ∧ C2) = mins(γ(C1)⊗ γ(C2)), where “ ⊗” is defined in (1) above.
– γ(C1 ∨ C2) = mins(γ(C1) ∪ γ(C2)).

In practice, a set of composite choices K is just a device to represent a set of
worlds ωK . Therefore, we will not distinguish two choice expressions, C1 and C2,
as long as the worlds identified by γ(C1) and γ(C2) are the same. For example,
the choice expressions α1 and (α1 ∧ α2) ∨ (α1 ∧ ¬α2) are equivalent, since both
represent the same set of selections (those including atomic choice α1).

Formally, we introduce the following equivalence relation on choice expres-
sions: C1 ∼ C2 if ωγ(C1) = ωγ(C2). Roughly speaking, C1 and C2 are equivalent
if the sets of composite choices in γ(C1) and γ(C2) can be extended to produce
the same set of selections.

Let C̃ denote the quotient set of C by “∼”. Moreover, we let C ∈ C̃ denote
the equivalence class [C] when no confusion can arise. Then, ⟨C̃,∧,∨,¬,⊤,⊥⟩ is
a Boolean algebra and the following axioms hold:

Associativity C1∨(C2∨C3) = (C1∨C2)∨C3 and C1∧(C2∧C3) = (C1∧C2)∧C3.
Commutativity C1 ∨ C2 = C2 ∨ C1 and C1 ∧ C2 = C2 ∧ C1.
Absorption C1 ∨ (C1 ∧ C2) = C1 and C1 ∧ (C1 ∨ C2) = C1.
Identity C ∨ ⊥ = C and C ∧ ⊤ = C.
Distributivity C1 ∨ (C2 ∧ C3) = (C1 ∨ C2) ∧ (C1 ∨ C3) and C1 ∧ (C2 ∨ C3) =

(C1 ∧ C2) ∨ (C1 ∧ C3).

12 G. Vidal

Complements C ∨ ¬C = ⊤ and C ∧ ¬C = ⊥.

Furthermore, double negation elimination and De Morgan’s laws also hold:

Double negation elimination ¬¬C = C.
De Morgan ¬(C1 ∨ C2) = ¬C1 ∧ ¬C2 and ¬(C1 ∧ C2) = ¬C1 ∨ ¬C2.

In the following, function “mins” is redefined in terms of the following rewrite
rules which are applied modulo associativity and commutativity of ∧ and ∨:

α1 ∧ α2 → ⊥ if α1 ∈ α2 C ∧ ¬C→ ⊥ C ∨ ¬C→ ⊤
α1 ∧ ¬α2 → α1 if α1 ∈ α2 C ∧ ⊤ → C C ∧ ⊥ → ⊥

C ∨ ⊤ → ⊤ C ∨ ⊥ → C
C1 ∨ (C1 ∧ C2)→ C1 C ∧ C→ C

The first rule introduces an inconsistency when a conjunction includes two dif-
ferent atomic choices for the same clause cθ. The second rule simplifies a con-
junction since ¬α2 denotes any atomic choice in α2 but α1 ∈ α2 is more specific.
The remaining rules are just oriented axioms or an obvious simplification.

It is often useful to compute the DNF (Disjunctive Normal Form) of a choice
expression in order to have a canonical representation:

Definition 5. Let C be a choice expression. Then, dnf(C) is defined as follows:
dnf(C) = mins(C′), where C →∗ C′ ̸→ and the relation → is defined by the
following canonical term rewrite system:

¬¬C→ C ¬(C1 ∨ C2)→ ¬C1 ∧ ¬C2 C1 ∧ (C2 ∨ C3)→ (C1 ∧ C2) ∨ (C1 ∧ C3)
¬(C1 ∧ C2)→ ¬C1 ∨ ¬C2 (C1 ∨ C2) ∧ C3 → (C1 ∧ C3) ∨ (C2 ∧ C3)

In the following, if a tree for atom a has n successful derivations computing
choice expressions C1, . . . ,Cn, we let dnf(¬(C1 ∨ . . . ∨ Cn)) denote its duals.

3.3 SLPDNF-Resolution

Finally, we can formalize the construction of SLPDNF-trees.7 In principle, they
have the same structure of SLDNF-trees. The main difference is that nodes
are now labeled with pairs ⟨Q,C⟩ and that the edges are labeled with both an
mgu (as before) and a choice expression (when a probabilistic atom is selected).
Given a query Q0, the construction of an SLPDNF-tree for Q0 starts with a
single node labeled with ⟨Q0,⊤⟩. An SLPDNF-tree can then be extended by
selecting a query ⟨Q,C⟩ with Q = l1, . . . , ln which is not yet marked (as failed,
success or floundered) and a literal li of Q and then proceeding as follows:

– If li is a derived atom and Q ;σ Q′, then ⟨Q,C⟩;σ ⟨Q′,C⟩.

7 SLPDNF stands for Selection rule driven Linear resolution for Probabilistic Definite
clauses augmented by the Negation as Failure rule.

Explaining Explanations in Probabilistic Logic Programming 13

– If li is a probabilistic atom, then we have a resolution step ⟨Q,C⟩ ;σ,(c,θ,i)

⟨Q′,C′⟩ for each clause cθ = (h1 : p1; . . . ;hn : pn ← B)θ ∈ G(P) such that
Q ;σ Q′ is a resolution step with respect to atom li and clause hiθ ← Bθ
and, moreover, C′ = dnf(C ∧ (c, θ, i)) ̸= ⊥.

– If li is a negative literal ¬a we have the following possibilities:
• if a is nonground, the query ⟨Q,C⟩ is marked as floundered ;
• if subs(Q) is undefined, a new tree T ′ with a single node labeled with
⟨a,⊤⟩ is added to T and subs(Q) is set to the root of T ′;

• if subs(Q) is defined, the corresponding tree cannot be further extended,
and it has n leaves marked as success with associated choice expressions
C1, . . . ,Cn, n ≥ 0, then we have ⟨Q,C⟩ ;id,Ca

⟨Q′,C′⟩, where Q′ is
obtained from Q by removing literal li, Ca = dnf(¬(C1 ∨ . . . ∨ Cn)), and
C′ = dnf(C ∧ Ca) ̸= ⊥. If C′ = ⊥ or n = 0, the node is marked as failed.

Leaves with empty queries are marked as success. An SLPDNF-tree for a query
Q is an SLPDNF-tree in which the root of the main tree is labeled with ⟨Q,⊤⟩.
An SLPDNF-tree is called successful (resp. finitely failed) if the main tree is
successful (resp. finitely failed). An SLPDNF-derivation for a query Q is a branch
in the main tree of an SLPDNF-tree Γ for Q, together with the set of all trees
in Γ whose roots can be reached from the nodes of this branch.

Given a successful SLPDNF-derivation for Q—also called a proof —of the
form ⟨Q,⊤⟩ = ⟨Q0,C0⟩ ;σ1

⟨Q1,C1⟩ ;σ2
. . . ;σn

⟨Qn,Cn⟩ = ⟨2,C⟩, the
composition σ1σ2 . . . σn (restricted to var(Q)) is called a computed answer sub-
stitution of Q and C represents the worlds where this derivation can be proved.

Example 4. Consider again the LPAD from Example 3 and the same grounding
for p1, p2, and p3. As in Example 2, we only consider two groundings for c2
for simplicity: {X/p1, Y/p2} and {X/p2, Y/p3}. Figure 3 shows the SLPDNF-
tree for the query covid(p1). Here, we have two proofs for covid(p1). The choice
expression C1 of the first proof is just (c1, σ, 1), where σ = {X/p1}. The choice
expression C2 of the second proof is given by

(c2, {X/p1, Y/p2}, 1) ∧ (c1, {X/p2}, 1) ∧ ¬(c3, σ, 1) ∧ ¬(c4, σ, 1)
∨ (c2, {X/p1, Y/p2}, 1) ∧ (c1, {X/p2}, 1) ∧ ¬(c3, σ, 1) ∧ (c5, σ, 1) ∧ ¬(c6, σ, 1)

Here, C2 represents a total of 9 composite choices which are obtained by replacing
negated atomic choices by their corresponding atomic choices (i.e., γ(C2)).

Traditionally, an explanation for a ground query Q is defined as a selection s
such that Q is true in the world ωs associated to this selection. As in [26], we
consider in this work a more relaxed notion and say that a composite choice κ is
an explanation for ground query Q if Q is true in all worlds associated to every
selection that extends κ. Formally, κ is an explanation for Q if ωs |= Q for all
selection s ⊇ κ. We also say that a set of composite choices K is covering w.r.t.
(ground) query Q if for all ω ∈ WP such that ω |= Q we have ω ∈ ωK [26].

Finding the most likely explanation of a query attracted considerable interest
in the probabilistic logic programming field (where it is also called Viterbi proof

14 G. Vidal

covid(p1)
(c1,σ,1)

vv
(c2,{X/p1,Y/p2},1)

++
pcr(p1)

��

contact(p1, p2), covid(p2),¬pro(p1)

��
2 covid(p2),¬pro(p1)

(c1,{X/p2},1)

tt

(c2,{X/p2,Y/p3},1)

))
pcr(p2),¬pro(p1)

��

...
[failed]

¬pro(p1)

''

(¬(c3, σ, 1) ∧ ¬(c4, σ, 1))∨
(¬(c3, σ, 1) ∧ (c5, σ, 1) ∧ ¬(c6, σ, 1)))��

young(p1)

(c6,σ,1)��
2 person(p1)

��
pro(p1)

vv ++

2

ffp2 (p1)

(c3,σ,1) ��

vacc(p1),¬vuln(p1)
(c4,σ,1)��

vuln(p1)

(c5,σ,1)��
person(p1)

��

person(p1),¬vuln(p1)

��

¬young(p1)
¬(c6,σ,1)
��

99

2 ¬vuln(p1)

<<

¬(c5,σ,1)∨(c6,σ,1)��

2

2

Fig. 3. SLPDNF-tree for query covid(p1), where σ = {X/p1} and predicates protected,
vaccinated, and vulnerable are abbreviated as pro, vacc, and vuln, respectively.

[23]). Note that, although it may seem counterintuitive, the selection with the
highest probability cannot always be obtained by extending the most likely proof
of a query (see [38, Example 6]). Let explP(Q) denote the set of composite choices
represented by the choice expressions in the successful leaves of the SLPDNF-tree
for Q w.r.t. G(P), i.e., explP(Q) =

⋃
C∈L γ(C), where L is the set of leaves marked

as success in the main SLPDNF-tree. The following result assumes that the query
Q is ground, but could be extended to non-ground queries by considering each
proof separately and backpropagating the computed answer substitution (which
grounds the query since the program is range-restricted [21]).

Theorem 1. Let P be a sound program and Q a ground query. Then, ωs |= Q
iff there exists a composite choice κ ∈ explP(Q) such that κ ⊆ s.

Therefore, expl(Q) is indeed a finite set of explanations which is covering for Q.

Explaining Explanations in Probabilistic Logic Programming 15

4 Proofs as Explanations

In this section, we focus on the representation of the explanations of a query.
In principle, we propose to show the proofs of a query (its successful SLPDNF-
derivations) as its explanations, from highest to lowest probability. Previous
approaches only considered the probability of a standard derivation D computing
a composite choice κ so that P (D) =

∏
(c,θ,i)∈κ π(c, i). Unfortunately, this is not

applicable to SLPDNF-derivations computing a choice expression (equivalently,
computing a set of composite choices). Therefore, we define the probability of
an SLPDNF-derivation as follows:

Definition 6. Let P be a program. Given a successful SLPDNF-derivation D
for a query Q computing the choice expression C, its associated probability is
P (D) =

∑
ω∈ωγ(C)

P (ω), i.e., the sum of the probabilities of all the worlds where
the successful derivation can be proved.

Computing P (D) resembles the problem of computing the probability of a query:
summing up the probabilities of the composite choices in γ(C) for a computed
choice expression C would not be correct since their associated worlds may over-
lap (i.e., there might be κ, κ′ ∈ γ(C) with κ ̸= κ′ such that ωκ ∩ ωκ′ ̸= ∅).

There is ample literature on computing the probability of a query, e.g., by
combining inference and a conversion to some kind of Boolean formula [13]. We
consider this problem an orthogonal topic which is outside of the scope of this
paper. Nevertheless, we present a transformational approach that converts the
problem of computing the probability of an SLPDNF-derivation into the problem
of computing the probability of a query in an LPAD program.

Definition 7. The first transformation takes an LPAD and returns a new LPAD:

trp(P) = {ch1 :p1; . . . ; chn :pn | cθ = (h1 :p1; . . . ;hn :pn ← B)θ ∈ G(P)
and chi = ch(c, var(c)θ, i), i ∈ {1, . . . , n}}

where var(c) returns a list with the clause variables. Our second transformation
takes a choice expression and returns a (ground) query as follows:

trc(⊤) = true trc(⊥) = false
trc((c, θ, i)) = ch(c, var(c)θ, i) trc(¬C) = ¬trc(C)
trc(C1 ∧ C2) = trc(C1), trc(C2) trc(C1 ∨ C2) = trc(C1); trc(C2)

Now, given an LPAD P, the probability of an SLPDNF-derivation D computing
choice expression C can be obtained from the probability of query trc(C) in LPAD
trp(P). The correctness of the transformation is an easy consequence of the fact
that the probability distribution of P and trp(P) is the same and that the query
trc(C) computes an equivalent choice expression in trp(P); namely, an atomic
choice (c, θ, i) has now the form (cθ, {}, i) but the structure of the computed
choice expression is the same.

16 G. Vidal

Example 5. Consider again LPAD P from Example 3 and its grounding for p1,
p2, and p3. trp(P) is as follows (for clarity, only the clauses of interest are shown):

ch(c1, [p1], 1) :0.9. ch(c1, [p2], 1) :0.9.
ch(c2, [p1, p2], 1) :0.4; ch(c2, [p1, p2], 2) :0.3.
ch(c3, [p1], 1) :0.3; ch(c3, [p1], 2) :0.4; ch(c3, [p1], 3) :0.1.
ch(c4, [p1], 1) :0.8. ch(c5, [p1], 1) :0.6. ch(c6, [p1], 1) :0.2; ch(c6, [p1], 2) :0.5.

The query covid(p1) computes two choice expressions: C1 = (c1, σ, 1), where
σ = {X/p1}, and C2 =

(c2, {X/p1, Y/p2}, 1) ∧ (c1, {X/p2}, 1) ∧ ¬(c3, σ, 1) ∧ ¬(c4, σ, 1)
∨ (c2, {X/p1, Y/p2}, 1) ∧ (c1, {X/p2}, 1) ∧ ¬(c3, σ, 1) ∧ (c5, σ, 1) ∧ ¬(c6, σ, 1)

(2)

Here, we have trc(C1) = ch(c1, [p1], 1) and trc(C2) =

ch(c2, [p1, p2], 1), ch(c1, [p2], 1),¬ch(c3, [p1], 1),¬ch(c4, [p1], 1)
; ch(c2, [p1, p2], 1), ch(c1, [p2], 1),¬ch(c3, [p1], 1), ch(c5, [p1], 1),¬ch(c6, [p1], 1)

The probability of trc(C1) in trp(P) using a system like PITA [33] or ProbLog [13]
is 0.9, while that of trc(C2) is 0.147168. The probability of the query covid(p1)
can be obtained from the probability of the disjunction trc(C1); trc(C2), which
gives 0.9147168.

As mentioned before, we propose to show the proofs of a query as explanations,
each one with its associated probability. However, instead of using SLPDNF-
derivations, each proof will be represented by an AND-tree [7], whose structure
is more intuitive. Roughly speaking, while an SLPDNF-derivation is a sequence
of queries, in an AND-tree each node is labeled with a literal; when it is resolved
with a (possibly probabilistic) clause with body literals b1, . . . , bn, we add n
nodes as children labeled with b1, . . . , bn (no children if n = 0, i.e., the clause is
a fact). W.l.o.g., we assume in the following that the initial query is atomic.8

In order to represent the AND-trees of the proofs of a query (i.e., its successful
SLPDNF-derivations), we follow these guidelines:

– First, we backpropagate the computed mgu’s to all queries in the considered
derivation, so that all of them become ground (a consequence of the pro-
gram being range-restricted [21]). Formally, if D has the form ⟨Q0,C0⟩;σ1

. . . ;σn
⟨Qn,Cn⟩, we consider ⟨Q0σ,C0⟩ ;σ′

1
. . . ;σ′

n
⟨Qnσ,Cn⟩ instead,

where σ = σ1σ1 . . . σn.
– As for the choice expressions labeling the edges of the original derivation, we

only show those associated to the resolution of negative literals. The case of
(probabilistic) positive atoms is considered redundant since the information
given by an atomic choice is somehow implicit in the tree.

8 Nevertheless, one could consider an arbitrary query Q by adding a clause of the
form main(X1, . . . , Xn) ← Q for some fresh predicate main/n, where var(Q) =
{X1, . . . , Xn}, and then consider query main(X1, . . . , Xn) instead.

Explaining Explanations in Probabilistic Logic Programming 17

[Prob : 0.9]
covid(p1)

��

[Prob : 0.147168]
covid(p1)

~~ �� !!
pcr(p1) contact(p1, p2) covid(p2)

��

¬protected(p1)
(¬ffp2(p1) ∧ ¬vacc(p1))
∨
(¬ffp2(p1) ∧ vuln(p1) ∧ ¬young(p1))

��
pcr(p2) 2

Fig. 4. Representing explanations with AND-trees

– Negative literals ¬a have only one child, 2, and the edge is labeled with the
same choice expression as in the SLPDNF-derivation, since this information
cannot be extracted from the AND-tree. However, in order to improve its
readability, we choose a more intuitive representation for choice expressions,
which is inductively defined as follows:

chq(C) =

hiθ if C = (c, θ, i), c = (h1 :p1; . . . ;hn :pn ← B)
¬chq(C′) if C = ¬C′

chq(C1) ∧ chq(C2) if C = C1 ∧ C2

chq(C1) ∨ chq(C2) if C = C1 ∨ C2

E.g., given the following choice expression from Example 4:

C = (¬(c3, σ, 1) ∧ ¬(c4, σ, 1)) ∨ (¬(c3, σ, 1) ∧ (c5, σ, 1) ∧ ¬(c6, σ, 1))

we have chq(C) =

(¬ffp2 (p1) ∧ ¬vaccinated(p1)) ∨ (¬ffp2 (p1) ∧ vulnerable(p1) ∧ ¬young(p1))

Let chq(C) be the expression labeling the edge from ¬a. We further remove
the occurrences of ¬a in chq(C) (if any) since they are clearly redundant.

Consider, for instance, the two proofs of query covid(p1) shown in Figure 3. The
corresponding AND-trees are shown in Figure 4, each one with its associated
probability (see Example 5 above), where the only edge issuing from a nega-
tive literal, ¬protected(p1), is labeled with chq(C) = (¬ffp2 (p1) ∧ ¬vacc(p1)) ∨
(¬ffp2 (p1) ∧ vuln(p1) ∧ ¬young(p1)) as computed above (here, vacc and vuln
stands for vaccinated and vulnerable, as usual).

AND-trees can also be represented in textual form, as shown in Figure 5 (a),
where protected, vaccinated, and vulnerable are abbreviated as pro, vacc, and
vuln, respectively. Alternatively, one can easily rewrite the textual representation
using natural language. For this purpose, the user should provide appropriate
program annotations. For instance, given the following annotation:

%!read covid(A) as: "A has covid-19"

18 G. Vidal

Explanations for query covid(p1):

[Prob : 0.9] covid(p1) p1 has covid-19 because
pcr(p1) the pcr test of p1 was positive

[Prob : 0.147168] covid(p1) p1 has covid-19 because
contact(p1, p2) p1 had contact with p2
covid(p2) and p2 has covid-19 because

pcr(p2) the pcr test of p2 was positive
¬pro(p1) and p1 was not protected because
¬ffp2 (p1) p1 didn’t wear an ffp2 mask
¬vacc(p1) and p1 was not vaccinated
; or because
¬ffp2 (p1) p1 didn’t wear an ffp2 mask
vuln(p1) and p1 is vulnerable
¬young(p1) and p1 is not young

(a) (b)

Fig. 5. Textual representation for explanations

we could replace covid(p1) by the sentence “p1 has covid-19”. Given appropriate
annotations, the AND-trees in Figure 4 could also be represented as shown in
Figure 5 (b).

Furthermore, one can easily design an appropriate interface where initially
all elements are folded and one can click on each fact in order to unfold the
list of reasons. In this way, the user could more easily navigate through the
explanation and focus on her particular interests. Another improvement could
consist in showing the concrete alternatives to negative literals. For example,
one can show {surgical(p1), cloth(p1), none} when hovering over ¬ffp2 (p1).

5 Related Work

We found very few works in which a query-driven inference mechanism for some
form of probabilistic logic programs with negation is formalized. Among them,
the closest are the works of Riguzzi [29,31,30], although the aim is different
to ours (efficiently computing the marginal probability of a query rather than
producing comprehensible explanations). Specifically, [29] proposes an algorithm
for performing inference with LPADs where a modification of SLDNF-resolution
is used for computing explanations in combination with BDDs. Later on, [31]
presents an algorithm for performing inference on non-modularly acyclic LPADs.
For this purpose, SLGAD (SLG for Annotated Disjunctions) is introduced, an ex-
tension of SLG-resolution for LPAD. Here, the inference mechanism uses tabling
to avoid redundant computations and to avoid infinite loops. A distinctive fea-
ture of this approach is that the SLGAD-tree computes a set of composite choices
which are mutually incompatible. This is achieved by performing a sort of lin-
earization in the computation of atomic choices, so that every time a choice

Explaining Explanations in Probabilistic Logic Programming 19

is done, a new branch where this choice is not selected is also added. This is
appropriate for computing the marginal probability of a query but makes the
(typically huge) trees much less useful from the point of view of explainability.

The closest work is [30], which presents an extension of SLDNF-resolution for
ICL (Independent Choice Logic [25]). There are, however, some significant dif-
ferences to our work. First, the considered language is different (ICL vs LPAD).
Second, [30] aims at defining a technique to compute the marginal probability
of a query while our work is concerned with the generation of comprehensible
explanations. Finally, the shape of the resolution trees are different since we
deal with sets of composite choices (represented by choice expressions) so that
queries where a negated literal is selected have (at most) one child. Indeed, the
introduction of an algebra of choice expressions, together with negated atomic
choices for a more compact representation, are significant differences w.r.t. [30],
and they are essential for producing appropriate explanations. We also note that
[30] does not require grounding the program, although in return it imposes some
very strong conditions in order to guarantee that every time a literal is selected,
it is ground and, morever, the computed mgu completely grounds the considered
clause in the resolution step.

A different approach to computing explanations is introduced in [41]. The
aim of this work is similar to ours, but there are significant differences too.
On the one hand, the language considered is ProbLog without negation nor
annotated disjunctions, so it is a much simpler setting (it can be seen as a
particular case of the language considered in this work). On the other hand,
the generated explanations are programs (a set of ground probabilistic clauses),
which are obtained through different unfolding transformations. In fact, [41] can
be seen as a complementary approach to the one presented here.

Finally, let us mention several approaches to improve the generation of expla-
nations in some closely related but non-probabilistic fields: logic programming
and answer set programming (ASP) [6]. First, [9] presents a tool, xclingo, for
generating explanations from annotated ASP programs. Annotations are then
used to construct derivation trees containing textual explanations. Moreover, the
language allows the user to select which atoms or rules should be included in
the explanations. On the other hand, [4] presents so-called justifications for ASP
programs with constraints, now based on a goal-directed semantics. As in the
previous work, the user can decide the level of detail required in a justification
tree, as well as add annotations to produce justifications using natural language.
Some of the ideas presented in Section 4 follow an approach which is similar to
that of [4]. Other related approaches are the off-line and on-line justifications of
[22], which provide a graph-based explanation of the truth value of a literal, and
the causal graph justifications of [8], which explains why a literal is contained
in an answer set (though negative literals are not represented). Obviously, our
work shares the aim of these papers regarding the generation of comprehensible
explanations in a logic setting. However, the considered language and the ap-
plied techniques are different. Nevertheless, we believe that our approach could
be enriched with some of the ideas in these works.

20 G. Vidal

6 Concluding Remarks and Future Work

In this work, we have presented a new approach for query-driven inference in a
probabilistic logic language, thus defining an extension of the SLDNF-resolution
principle, called SLPDNF-resolution, that keeps the structure of the original
SLDNF-trees. Here, each proof of a query is now accompanied by a so-called
choice expression that succinctly represents the possible worlds where this proof
holds. We have also shown that choice expressions form a Boolean algebra, which
allows us to manipulate them in a very flexible way. Furthermore, the generated
proofs are especially appropriate to produce comprehensible explanations for
a given query. In particular, we represent each proof in a way that its causal
structure becomes evident, using either AND-trees or an equivalent textual rep-
resentation using natural language.

As future work, we consider several extensions. On the one hand, we plan
to deal with a broader class of programs. For this purpose, we will explore the
definition of an extension of SLG-resolution [10] and/or some of the approaches
for goal-directed execution of ASP programs (e.g., [19]). On the other hand, we
would also like to extend the inference mechanism in order to include evidences
(that is, ground facts whose true/false value is known). Finally, on the practical
side, we plan to develop a robust tool for generating explanations that can be
used with ProbLog and LPAD programs. Such a tool will allow us to evaluate
in practice the usefulness of the techniques presented in this work.

Acknowledgements. I would like to thank the anonymous reviewers for their
suggestions to improve this paper.

References

1. Apt, K.R.: From Logic Programming to Prolog. Prentice Hall (1997)
2. Apt, K.R., Bezem, M.: Acyclic programs. New Gener. Comput. 9(3-4), 335–64

(1991). https://doi.org/10.1007/BF03037168
3. Apt, K.R., Doets, K.: A New Definition of SNDNF-Resolution. J. Log. Program.

18(2), 177–190 (1994). https://doi.org/10.1016/0743-1066(94)90051-5
4. Arias, J., Carro, M., Chen, Z., Gupta, G.: Justifications for goal-directed con-

straint answer set programming. In: Ricca, F., Russo, A., Greco, S., Leone, N.,
Artikis, A., Friedrich, G., Fodor, P., Kimmig, A., Lisi, F.A., Maratea, M., Mileo,
A., Riguzzi, F. (eds.) Proceedings of the 36th International Conference on Logic
Programming (ICLP Technical Communications 2020). EPTCS, vol. 325, pp. 59–
72 (2020). https://doi.org/10.4204/EPTCS.325.12

5. Arrieta, A.B., Rodríguez, N.D., Ser, J.D., Bennetot, A., Tabik, S., Barbado,
A., García, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., Her-
rera, F.: Explainable artificial intelligence (XAI): concepts, taxonomies, oppor-
tunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020).
https://doi.org/10.1016/j.inffus.2019.12.012

6. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011). https://doi.org/10.1145/2043174.2043195

https://doi.org/10.1007/BF03037168
https://doi.org/10.1016/0743-1066(94)90051-5
https://doi.org/10.4204/EPTCS.325.12
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1145/2043174.2043195

Explaining Explanations in Probabilistic Logic Programming 21

7. Bruynooghe, M.: A Practical Framework for the Abstract Interpretation of Logic
Programs. J. Log. Program. 10(2), 91–124 (1991)

8. Cabalar, P., Fandinno, J., Fink, M.: Causal graph justifications of
logic programs. Theory Pract. Log. Program. 14(4-5), 603–618 (2014).
https://doi.org/10.1017/S1471068414000234

9. Cabalar, P., Fandinno, J., Muñiz, B.: A system for explainable answer set pro-
gramming. In: Ricca, F., Russo, A., Greco, S., Leone, N., Artikis, A., Friedrich,
G., Fodor, P., Kimmig, A., Lisi, F.A., Maratea, M., Mileo, A., Riguzzi, F.
(eds.) Proceedings of the 36th International Conference on Logic Programming
(ICLP Technical Communications 2020). EPTCS, vol. 325, pp. 124–136 (2020).
https://doi.org/10.4204/EPTCS.325.19

10. Chen, W., Warren, D.S.: Tabled evaluation with delaying for general logic pro-
grams. J. ACM 43(1), 20–74 (1996). https://doi.org/10.1145/227595.227597

11. Clark, K.L.: Negation as Failure. In: Gallaire, H., Minker, J. (eds.) Proceedings of
the Symposium on Logic and Data Bases. pp. 293–322. Advances in Data Base The-
ory, Plemum Press, New York (1977). https://doi.org/10.1007/978-1-4684-3384-
5_11

12. EU, EEA: Regulation (EU) 2016/679 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such data,
available from https://eur-lex.europa.eu/eli/reg/2016/679/oj

13. Fierens, D., den Broeck, G.V., Renkens, J., Shterionov, D.S., Gutmann, B., Thon,
I., Janssens, G., Raedt, L.D.: Inference and learning in probabilistic logic programs
using weighted boolean formulas. Theory Pract. Log. Program. 15(3), 358–401
(2015). https://doi.org/10.1017/S1471068414000076

14. Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic
programs. J. ACM 38(3), 620–650 (1991). https://doi.org/10.1145/116825.116838

15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R.A., Bowen, K.A. (eds.) Proceedings of the 5th International Confer-
ence on Logic Programming (ICLP’88). pp. 1070–1080. MIT Press (1988)

16. Kersting, K., Raedt, L.D.: Towards combining inductive logic programming
with bayesian networks. In: Rouveirol, C., Sebag, M. (eds.) Proceedings of the
11th International Conference on Inductive Logic Programming (ILP 2001).
Lecture Notes in Computer Science, vol. 2157, pp. 118–131. Springer (2001).
https://doi.org/10.1007/3-540-44797-0_10

17. Lifschitz, V.: On the declarative semantics of logic programs with negation. In:
Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming,
pp. 177–192. Morgan Kaufmann (1988). https://doi.org/10.1016/B978-0-934613-
40-8.50008-7

18. Lloyd, J.W.: Foundations of Logic Programming, 2nd Edition. Springer (1987).
https://doi.org/10.1007/978-3-642-83189-8

19. Marple, K., Bansal, A., Min, R., Gupta, G.: Goal-directed execution of an-
swer set programs. In: Schreye, D.D., Janssens, G., King, A. (eds.) Principles
and Practice of Declarative Programming (PPDP’12). pp. 35–44. ACM (2012).
https://doi.org/10.1145/2370776.2370782

20. Muggleton, S.: Stochastic logic programs. In: de Raedt, L. (ed.) Advances in In-
ductive Logic Programming, pp. 254–264. IOS Press (1996)

21. Muggleton, S.H.: Learning stochastic logic programs. Electron. Trans. Artif. Intell.
4(B), 141–153 (2000), http://www.ep.liu.se/ej/etai/2000/015/

22. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs un-
der answer set semantics. Theory Pract. Log. Program. 9(1), 1–56 (2009).
https://doi.org/10.1017/S1471068408003633

https://doi.org/10.1017/S1471068414000234
https://doi.org/10.4204/EPTCS.325.19
https://doi.org/10.1145/227595.227597
https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/10.1007/978-1-4684-3384-5_11
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1017/S1471068414000076
https://doi.org/10.1145/116825.116838
https://doi.org/10.1007/3-540-44797-0_10
https://doi.org/10.1016/B978-0-934613-40-8.50008-7
https://doi.org/10.1016/B978-0-934613-40-8.50008-7
https://doi.org/10.1007/978-3-642-83189-8
https://doi.org/10.1145/2370776.2370782
http://www.ep.liu.se/ej/etai/2000/015/
https://doi.org/10.1017/S1471068408003633

22 G. Vidal

23. Poole, D.: Logic programming, abduction and probability - A top-down anytime
algorithm for estimating prior and posterior probabilities. New Gener. Comput.
11(3), 377–400 (1993). https://doi.org/10.1007/BF03037184

24. Poole, D.: Probabilistic horn abduction and bayesian networks. Artif. Intell. 64(1),
81–129 (1993). https://doi.org/10.1016/0004-3702(93)90061-F

25. Poole, D.: The independent choice logic for modelling multiple agents under
uncertainty. Artif. Intell. 94(1-2), 7–56 (1997). https://doi.org/10.1016/S0004-
3702(97)00027-1

26. Poole, D.: Abducing through negation as failure: stable models within
the independent choice logic. J. Log. Program. 44(1-3), 5–35 (2000).
https://doi.org/10.1016/S0743-1066(99)00071-0

27. Raedt, L.D., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic Prolog and its
application in link discovery. In: Veloso, M.M. (ed.) Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2007). pp. 2462–2467
(2007), http://ijcai.org/Proceedings/07/Papers/396.pdf

28. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987). https://doi.org/10.1016/0004-3702(87)90062-2

29. Riguzzi, F.: A top down interpreter for LPAD and cp-logic. In: Basili, R., Pazienza,
M.T. (eds.) AI*IA 2007: Artificial Intelligence and Human-Oriented Comput-
ing, 10th Congress of the Italian Association for Artificial Intelligence, Rome,
Italy, September 10-13, 2007, Proceedings. Lecture Notes in Computer Science,
vol. 4733, pp. 109–120. Springer (2007). https://doi.org/10.1007/978-3-540-74782-
6_11, https://doi.org/10.1007/978-3-540-74782-6_11

30. Riguzzi, F.: Extended semantics and inference for the independent choice logic.
Log. J. IGPL 17(6), 589–629 (2009). https://doi.org/10.1093/JIGPAL/JZP025

31. Riguzzi, F.: SLGAD resolution for inference on logic programs with
annotated disjunctions. Fundam. Informaticae 102(3-4), 429–466 (2010).
https://doi.org/10.3233/FI-2010-313

32. Riguzzi, F.: Foundations of Probabilistic Logic Programming: Languages, Seman-
tics, Inference and Learning. River Publishers (2018)

33. Riguzzi, F., Swift, T.: Well-definedness and efficient inference for probabilistic
logic programming under the distribution semantics. Theory Pract. Log. Pro-
gram. 13(2), 279–302 (2013). https://doi.org/10.1017/S1471068411000664, https:
//doi.org/10.1017/S1471068411000664

34. Riguzzi, F., Swift, T.: A survey of probabilistic logic programming. In: Kifer, M.,
Liu, Y.A. (eds.) Declarative Logic Programming: Theory, Systems, and Appli-
cations, ACM Books, vol. 20, pp. 185–228. ACM / Morgan & Claypool (2018).
https://doi.org/10.1145/3191315.3191319

35. Ross, K.A.: Modular acyclicity and tail recursion in logic programs. In:
Rosenkrantz, D.J. (ed.) Proceedings of the Tenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems. pp. 92–101. ACM Press
(1991). https://doi.org/10.1145/113413.113422

36. Sato, T.: A statistical learning method for logic programs with distribution se-
mantics. In: Sterling, L. (ed.) Logic Programming, Proceedings of the Twelfth
International Conference on Logic Programming, Tokyo, Japan, June 13-16, 1995.
pp. 715–729. MIT Press (1995)

37. Sato, T., Kameya, Y.: PRISM: A language for symbolic-statistical modeling. In:
Proceedings of the Fifteenth International Joint Conference on Artificial Intelli-
gence, IJCAI 97, Nagoya, Japan, August 23-29, 1997, 2 Volumes. pp. 1330–1339.
Morgan Kaufmann (1997), http://ijcai.org/Proceedings/97-2/Papers/078.pdf

https://doi.org/10.1007/BF03037184
https://doi.org/10.1016/0004-3702(93)90061-F
https://doi.org/10.1016/S0004-3702(97)00027-1
https://doi.org/10.1016/S0004-3702(97)00027-1
https://doi.org/10.1016/S0743-1066(99)00071-0
http://ijcai.org/Proceedings/07/Papers/396.pdf
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1007/978-3-540-74782-6_11
https://doi.org/10.1007/978-3-540-74782-6_11
https://doi.org/10.1007/978-3-540-74782-6_11
https://doi.org/10.1093/JIGPAL/JZP025
https://doi.org/10.3233/FI-2010-313
https://doi.org/10.1017/S1471068411000664
https://doi.org/10.1017/S1471068411000664
https://doi.org/10.1017/S1471068411000664
https://doi.org/10.1145/3191315.3191319
https://doi.org/10.1145/113413.113422
http://ijcai.org/Proceedings/97-2/Papers/078.pdf

Explaining Explanations in Probabilistic Logic Programming 23

38. Shterionov, D.S., Renkens, J., Vlasselaer, J., Kimmig, A., Meert, W., Janssens, G.:
The most probable explanation for probabilistic logic programs with annotated dis-
junctions. In: Davis, J., Ramon, J. (eds.) Proceedings of the 24th International Con-
ference on Inductive Logic Programming (ILP 2014). Lecture Notes in Computer
Science, vol. 9046, pp. 139–153. Springer (2014). https://doi.org/10.1007/978-3-
319-23708-4_10

39. Vennekens, J., Denecker, M., Bruynooghe, M.: CP-logic: A language of causal prob-
abilistic events and its relation to logic programming. Theory Pract. Log. Pro-
gram. 9(3), 245–308 (2009). https://doi.org/10.1017/S1471068409003767, https:
//doi.org/10.1017/S1471068409003767

40. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated
disjunctions. In: Demoen, B., Lifschitz, V. (eds.) Logic Programming, 20th In-
ternational Conference, ICLP 2004, Saint-Malo, France, September 6-10, 2004,
Proceedings. Lecture Notes in Computer Science, vol. 3132, pp. 431–445. Springer
(2004). https://doi.org/10.1007/978-3-540-27775-0_30

41. Vidal, G.: Explanations as programs in probabilistic logic programming. In: Hanus,
M., Igarashi, A. (eds.) Proceedings of the 16th International Symposium on Func-
tional and Logic Programming (FLOPS 2022). Lecture Notes in Computer Science,
vol. 13215, pp. 205–223. Springer (2022). https://doi.org/10.1007/978-3-030-99461-
7_12

https://doi.org/10.1007/978-3-319-23708-4_10
https://doi.org/10.1007/978-3-319-23708-4_10
https://doi.org/10.1017/S1471068409003767
https://doi.org/10.1017/S1471068409003767
https://doi.org/10.1017/S1471068409003767
https://doi.org/10.1007/978-3-540-27775-0_30
https://doi.org/10.1007/978-3-030-99461-7_12
https://doi.org/10.1007/978-3-030-99461-7_12

24 G. Vidal

A Technical Proofs

First, we will prove that ⟨C̃,∧,∨,¬,⊤,⊥⟩ is indeed a Boolean algebra. Let us
recall that C1 ∼ C2 if ωγ(C1) = ωγ(C2) and C̃ denotes the quotient set of C (the
domain of choice expressions for a given program) by “∼”, where

– γ(⊥) = {}, i.e., ⊥ denotes an inconsistent set of atomic choices.
– γ(⊤) = {{}}, i.e., ⊤ represents a composite choice, {}, that can be extended

in order to produce all possible selections.
– γ(α) = {{α}}.
– γ(¬C) = duals(γ(C)), i.e., ¬C represents the complement of C.
– γ(C1 ∧ C2) = mins(γ(C1)⊗ γ(C2)).
– γ(C1 ∨ C2) = mins(γ(C1) ∪ γ(C2)).

Here, C ∈ C̃ denote the equivalence class [C] when no confusion can arise.
Moreover, we recall the following lemma from [26]:

Lemma 1 (Lemma 4.8 in [26]). Let K be a set of composite choices. Then,
duals(K) is a complement of K.

Now, we can prove that ⟨C̃,∧,∨,¬,⊤,⊥⟩ is a Boolean algebra.

Proposition 1. ⟨C̃,∧,∨,¬,⊤,⊥⟩ is a Boolean algebra.

Proof. We prove the axioms of a Boolean algebra. Here, to prove that two choice
expressions, C1 and C2, are equivalent, we will prove that γ(C1) ≈ γ(C2), where
K1 ≈ K2 if K1 = K2 or ωK1

= ωK2
. In the following, we assume C,C1,C2,C3, . . .

are choice expressions that denote the corresponding class. Moreover, we ignore
the applications of function mins for clarity since it cannot affect the result, only
to the element of the class which is shown.

(Associativity) The first axiom C1 ∨ (C2 ∨ C3) = (C1 ∨ C2) ∨ C3 follows from
the associativity of set union since γ(C1 ∨ C2) = γ(C1) ∪ γ(C2). Similarly, the
second axiom C1 ∧ (C2 ∧ C3) = (C1 ∧ C2) ∧ C3 follows from the fact that “⊗” is
associative over sets since γ(C1 ∧ C2) = γ(C1)⊗ γ(C2).

(Commutativity) Again, both axioms C1∨C2 = C2∨C1 and C1∧C2 = C2∧C1

follow straightforwardly from the commutativity of “∪” and “⊗”.
(Absorption) Axiom C1 ∨ (C1 ∧ C2) = C1 follows from the fact that the

composite choices in γ(C1 ∧ C2) are all redundant (i.e., do not affect to the
considered class) w.r.t. γ(C1) since they will be supersets of the sets in γ(C1).
As for axiom C1 ∧ (C1 ∨ C2) = C1, it follows from the following equivalences:

γ(C1 ∧ (C1 ∨ C2))
= γ(C1)⊗ (γ(C1) ∪ γ(C2))
= (γ(C1)⊗ γ(C1)) ∪ (γ(C1)⊗ γ(C2))
≈ γ(C1) ∪ (γ(C1)⊗ γ(C2))
= γ(C1)

since all composite choices in γ(C1)⊗ γ(C2) are supersets of those in γ(C1) and,
thus, do not affect to the considered class.

Explaining Explanations in Probabilistic Logic Programming 25

(Identity) Both axioms C ∨ ⊥ = C and C ∧ ⊤ = C are trivial by definition
(e.g., by taking γ(⊥) = {} and γ(⊤) = {{}}).

(Distributivity) The first axiom, C1∨(C2∧C3) = (C1∨C2)∧(C1∨C3) follows
from the following equivalences:

γ((C1 ∨ C2) ∧ (C1 ∨ C3))
= (γ(C1) ∪ γ(C2))⊗ (γ(C1) ∪ γ(C3))
= (γ(C1)⊗ γ(C1)) ∪ (γ(C1)⊗ γ(C3)) ∪ (γ(C2)⊗ γ(C1)) ∪ (γ(C2)⊗ γ(C3))
≈ γ(C1) ∪ (γ(C2)⊗ γ(C3))
= γ(C1 ∨ (C2 ∧ C3))

The second axiom, C1 ∧ (C2 ∨ C3) = (C1 ∧ C2) ∨ (C1 ∧ C3) follows easily since

γ(C1 ∧ (C2 ∨ C3))
= γ(C1)⊗ (γ(C2) ∪ γ(C3))
= (γ(C1)⊗ γ(C2)) ∪ (γ(C1)⊗ γ(C3))
= γ((C1 ∧ C2) ∨ (C1 ∧ C3))

(Complements) Axiom C ∨ ¬C = ⊤ follows from Lemma 1. Thus, γ(C) ∪
γ(¬C) = γ(C) ∪ duals(γ(C)) cover all possible selections. Axiom C ∧ ¬C = ⊥
holds since every element in γ(C)⊗ duals(γ(C)) is inconsistent by construction.

⊓⊔

The following auxiliary lemma is required for the remaining results:

Lemma 2. Let K1,K2 be sets of composite choices. Then, mins(hits(K1⊗K2)) =
mins(hits(K1) ∪ hits(K2)).

Proof. Trivially, we have hits(K1) ⊆ hits(K1⊗K2) and hits(K2) ⊆ hits(K1⊗K2).
Then, the claim follows from the fact that the hitting sets that combine elements
from K1 and K2 are redundant and are removed by mins since they include the
hitting sets in either hits(K1) or hits(K2). ⊓⊔

Double negation elimination and the usual De Morgan’s laws also hold for choice
expressions:

Proposition 2. Let C,C1,C2 ∈ C̃. Then,

1. ¬¬C = C;
2. ¬(C1 ∨ C2) = ¬C1 ∧ ¬C2;
3. ¬(C1 ∧ C2) = ¬C1 ∨ ¬C2.

Proof. We follow the same considerations as in the proof of Proposition 1. The
proof of the double negation elimination follows straightforwardly from Lemma 1
and the fact that the complement of a complement returns the original set
or another one which belongs to the same equivalence class, i.e., γ(¬¬C) =
duals(γ(¬C)) = duals(duals(γ(C))) = γ(C).

26 G. Vidal

The first De Morgan’s law can be proved as follows:

γ(¬(C1 ∨ C2))
= duals(γ(C1) ∪ γ(C2))

= hits(γ(C1) ∪ γ(C2))

= hits(γ(C1) ∪ γ(C2))

≈ hits(γ(C1)⊗ γ(C2)) (by Lemma 2)
= hits(γ(C1))⊗ hits(γ(C2))
= duals(γ(C1))⊗ duals(γ(C2))
= γ(¬C1)⊗ γ(¬C2)
= γ(¬C1 ∧ ¬C2)

The proof of the second De Morgan’s law proceeds analogously:

γ(¬(C1 ∧ C2))
= duals(γ(C1 ∧ C2))
= duals(γ(C1)⊗ γ(C2))

= hits(γ(C1)⊗ γ(C2))

= hits(γ(C1)⊗ γ(C2))

≈ hits(γ(C1)) ∪ hits(γ(C2)) (by Lemma 2)
= duals(γ(C1)) ∪ duals(γ(C2))
= γ(¬C1)) ∪ γ(¬C2))
= γ(¬C1 ∨ ¬C2)

⊓⊔

Finally, we can prove the soundness and completeness of SLPDNF-resolution,
i.e., that expl(Q) indeed produces a set of covering explanations for Q.

Theorem 1. Let P be a sound program and Q a ground query. Then, ωs |= Q
iff there exists a composite choice κ ∈ explP(Q) such that κ ⊆ s.

Proof. The proof follows a similar scheme as that of the proof of Theorem 4.7 in
[30] given the fact that ¬C represents a complement of C by definition and that
function dnf preserves the worlds represented by a choice expression (Proposi-
tions 1 and 2).

We prove the theorem by structural induction on the set of trees in Γ , the
SLPDNF-tree for Q.

Let us first consider the base case, where Γ only contains the main tree.
Therefore, no negative literal has been selected. Consider a successful SLPDNF-
derivation ⟨Q,⊤⟩ = ⟨Q0,⊤⟩ ;σ1

. . . ;σn
⟨Qn,Cn⟩. By definition, we have that

Cn = α1 ∧ . . . ∧ αm, where each αi is a (positive) atomic choice, i = 1, . . . , n.
Trivially, γ(Cn) = {{α1, . . . , αm}} = {κ} and κ is consistent by construction and
the fact that function dnf preserves the worlds (Propositions 1 and 2). Thus, the
SLDNF-derivation Q0 ;σ1

. . . ;σn
Qn can be proved in every world ωs where

κ ⊆ s and, equivalently, ωs |= Q.

Explaining Explanations in Probabilistic Logic Programming 27

The opposite direction is similar. Let ωs be a world such that ωs |= Q.
Then, there exists an SLDNF-derivation for Q in ωs. Now, we can construct an
SLPDNF-derivation that mimics the steps of the SLDNF-derivation by applying
either the first or the second case in the definition of SLPDNF-tree. If the con-
sidered predicate is not probabilistic, the equivalence is trivial. Otherwise, let us
consider that clause cθ = (hi ← B)θ from ωs has been used in the step. There-
fore, the SLPDNF-step will add the atomic choice (c, θ, i) to the current choice
expression. Hence, the computed choice expression in the leaf of this derivation
will have the form α1 ∧ . . . ∧ αm so that {α1, . . . , αm} ⊆ s.

Let us now consider the inductive case (Γ includes more than one tree). By
the inductive hypothesis, we assume that the claim holds for every SLPDNF-
tree of Γ which is not the main tree. Then, for each step, if the selected literal
is positive, the proof proceeds as in the base case. Otherwise, let ¬a be the
selected literal. By the inductive hypothesis, we have that, ωs |= a iff there
exists a composite choice κ ∈ explP(a) such that κ ⊆ s. Let Ca

1 , . . . ,C
a
j be the

choice expressions in the leaves of the SLPDNF-tree for a. By definition, we have
that every selection that extends a composite choice in γ(¬(Ca

1 ∨ . . . ∨ Ca
j)) is

inconsistent with any selection s with ωs |= a. Therefore, no SLDNF-derivation
for a can be successful in the worlds of ωγ(¬(Ca

1∨...∨Ca
j))

and the claim follows.
Consider now the opposite direction. Let ωs be a world such that ωs |= Q

and, thus, there exists a successful SLDNF-derivation for Q in ωs. As in the
base case, we can construct an SLPDNF-derivation that mimics the steps of
the SLDNF-derivation in ωs. If the selected literal is positive, the claim follows
by the same argument as the base case. Otherwise, consider a negative literal
¬a which is selected in some query. By the inductive hypothesis, we have that
expl(a) is indeed a covering set of explanations for a. Moreover, by construction,
the negated choice expression, say ¬Ca indeed represents a complement of this
set of explanations (i.e., γ(¬Ca) is a complement of γ(Ca)). Hence, this query
has a child with an associated choice expression, dnf(C ∧ ¬Ca) ̸= ⊥. Therefore
by mimicking all the steps of the successful SLDNF-derivation, we end up with
a leaf with a choice expression C′ such that s ⊇ κ for all κ ∈ γ(C′). ⊓⊔

	Explaining Explanations in Probabilistic Logic Programming

