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1 Introduction

The use of formal methods has helped transform network diagnosis, alongside
software-defined networking (SDN) [28] and programmable networks [6], from a
black art into a more disciplined practice [22]: Trial-and-error guesswork with
distributed protocols has been replaced by systematic software engineering [29],
rudimentary troubleshooting methods of the past, such as ping and traceroute,
have been supplemented, if not entirely overtaken, by formal verification and
synthesis [5,17,18,14,16,30,33,1,9]. A notable example is lightning fast reachabil-
ity analysis tools deployed in today’s hyper-scale datacenters [16,14,24]. Indeed,
with carefully crafted network representations and highly effective reasoning en-
gines, formal methods-based diagnosis flourished, thanks to the rise of the clean-
slate networks –— over-provisioned datacenters in particular -—- that assume
well-defined control software and well-measured workloads.

But networks in the wild remain mundane. Consider the public Internet,
enterprise networks, or smart-spaces; they are all evolving with unanticipated
requirements while operating continuously and are not stand-alone or well-
planned. The clean-slate diagnosis alone is inadequate in this context: A reach-
ability checker outperforms humans by orders of magnitudes in catching an
anomaly (property violation) in a network’s forwarding states, but it is still up
to the human expert to explain how the network procedure (protocols or SDN
software) actually produces that anomaly. Similarly, state-of-art tools scale to
hyper-scale networks with millions of nodes, but only a human expert can di-
rect the course of diagnosis to changing circumstances, new concerns, and past
results — a specific context, so to speak — discriminating between important
and less relevant cases so the diagnosis retains a sharp focus. One key missing
in tools but achieved by humans is the ability to reflect [26] –— the capability
to reason not only about networks but also about the reasoning process itself.

Can we, then, bring in some form of reflection as a means to more effec-
tive network diagnosis? Can we go beyond “what properties a network state
hold” and reflect on the increasingly complex procedures [7,9,11] that manip-
ulate those states, explaining why and how a certain (unintended) state is en-
countered [10,7]? While today’s diagnosis are performed in isolation and are
optimized for fixed metrics such as maximum coverage, can we make a more
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active use of a problem’s context, by using that extra knowledge to better frame
and scope the diagnosis and reflecting on the diagnosis (reasoning) process it-
self, enable diagnosis formulation and test generation that directly reflect the
context [32,4,34]? These are just a few possibilities, of course. This extended
abstract presents an initial study of reflective network diagnosis, discussing its
effectiveness and feasibility.

2 Ongoing work

We identify two reflective use cases: the first complements current diagnosis that
focuses on what the network states are (detecting anomalies). We instead reason
about how and why the network arrives at an anomaly by reflecting on the
state-manipulating procedures. The second case seeks to go beyond context-free
tools developed in isolation. By developing an explicit account of context — such
as a motivating concern or a related operation that do not easily refactor into
traditional problem formulation — within diagnosis, and seek to bring into the
diagnosis a sharper focus.

Non-monotonic diagnosis of network procedures Network verification [9,35,30],
the most advanced tool today, reasons about network forwarding states (data),
but does not reflect on the procedures — protocols or software (data-manipulation
procedures) — that produce the states. Those state manipulation programs in
real networks, however, are interesting by themselves. A notable example is the
so called oscillation problem of Internet routing [12,13], in which the path compu-
tation of a set of uncoordinated routers (e.g., with conflicting path preferences)
fails to converge. Figure1 (left) depicts a subtle oscillation scenario reported in
[23]. Built atop this example, we propose reflective diagnosis Case I: Reflect on
how a network arrives at certain state, even when the procedure (e.g., protocols,
control software) generating the states is non-deterministic or non-terminating.
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based on IGP path cost (in gray) and MED (in parenthesis). (right) c1 can send
packets to s2 and bypass the filter at 3.

2



Context-aware debugging of network states A second limitation we seek to ad-
dress is that existing diagnosis solutions often assume a well-defined problem in
a vacuum, but networks are “mundane”, and real problems almost always arise
from a specific context. To see the subtlety of “context”, consider the simple
network in Figure 1 (right). A network of 4 nodes (routers) is carrying traffic
between clients c1, c2 and servers s1, s2 that are divided into 4 flows (group of
packets), as shown in the table (so the first class h1 are those from c1 (source) to
s1). The arrows denote the next-hop of the forwarding action, and the hx → hy
label of a node says the header rewrite (of either a packet’s source or destination
field). So in addition to the usual packet forwarding (to the next-hop), node
1 turns flow h1 into h2. Node 3 also drops any packet in h4, thus acting as a
firewall blocking h4. Suppose the rewrites at 1, 4 are recently introduced, the
operator wants to know the impact of them on the firewall 3. Such context —
does two seemingly innocent rewrites collectively viloate a firewall? — does not
easily translate to well-supported diagnosis problems today. For example, reach-
ability diagnosis typically checks for certain (by default all) packets entering a
network at certain entry points. What are the right (relevant) flows and entries
to test? More generally, we propose reflective diagnosis Case II: Raise contexts
to first-class objects in the diagnosis process by (as a first step) using contexts
natively in the problem specification and directly in test generation, saving the
user from manually refactoring them in.

Implementation We built a prototype of the above reflective cases by enhanced
meta-interpreters in prolog [2,3,15]. Our key insight is that reflection [8,26] is
a specific form of meta-reasoning: reasoning about another reasoning process
which happens to be itself. Reflection thus aligns well with meta-programming,
meta-interpreters in particular, where a program treats another program (or
itself) as object data, which is well supported in Prolog [20,27,19,21], because
it does not distinguish between data and programs like its more conventional
counterparts and includes first-class meta-level constructs. In addition, Prolog
has a clear procedural reading -—- a sequential execution model — that makes
it remarkably suitable for capturing the operational complexities of network
procedures (e.g., routing). Based on these observations, we use meta-interpreters
as a reflection engine and an injection point for enhancements tailored to the
new proposed functions.

All implementations are fully tested on the latest stable version of XSB
5.0 (May 12, 2022) [31], and are publicly available [25]. The # of clauses (in
parenthesis) for the two cases is: iBGP (77), data-plane (19); Three enhanced
meta-interpreters for iBGP explaination (10), Two data-plane test generations
(5 for each). We also implemented a total of 46 utility clauses such as length/2
(for returning the length of a list) to avoid processing external libraries in the
meta-interpreter, and additional facilities like pretty_print to display an ex-
planation.
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