
Enhancing network diagnosis with reflection in
Prolog

Anduo Wang[0000−0002−1078−107X]

Temple University, Philadelphia, PA 19122, USA
anduo.wang@gmail.com

https://anduowang.github.io/

1 Introduction

The use of formal methods has helped transform network diagnosis, alongside
software-defined networking (SDN) [28] and programmable networks [6], from a
black art into a more disciplined practice [22]: Trial-and-error guesswork with
distributed protocols has been replaced by systematic software engineering [29],
rudimentary troubleshooting methods of the past, such as ping and traceroute,
have been supplemented, if not entirely overtaken, by formal verification and
synthesis [5,17,18,14,16,30,33,1,9]. A notable example is lightning fast reachabil-
ity analysis tools deployed in today’s hyper-scale datacenters [16,14,24]. Indeed,
with carefully crafted network representations and highly effective reasoning en-
gines, formal methods-based diagnosis flourished, thanks to the rise of the clean-
slate networks –— over-provisioned datacenters in particular -—- that assume
well-defined control software and well-measured workloads.

But networks in the wild remain mundane. Consider the public Internet,
enterprise networks, or smart-spaces; they are all evolving with unanticipated
requirements while operating continuously and are not stand-alone or well-
planned. The clean-slate diagnosis alone is inadequate in this context: A reach-
ability checker outperforms humans by orders of magnitudes in catching an
anomaly (property violation) in a network’s forwarding states, but it is still up
to the human expert to explain how the network procedure (protocols or SDN
software) actually produces that anomaly. Similarly, state-of-art tools scale to
hyper-scale networks with millions of nodes, but only a human expert can di-
rect the course of diagnosis to changing circumstances, new concerns, and past
results — a specific context, so to speak — discriminating between important
and less relevant cases so the diagnosis retains a sharp focus. One key missing
in tools but achieved by humans is the ability to reflect [26] –— the capability
to reason not only about networks but also about the reasoning process itself.

Can we, then, bring in some form of reflection as a means to more effec-
tive network diagnosis? Can we go beyond “what properties a network state
hold” and reflect on the increasingly complex procedures [7,9,11] that manip-
ulate those states, explaining why and how a certain (unintended) state is en-
countered [10,7]? While today’s diagnosis are performed in isolation and are
optimized for fixed metrics such as maximum coverage, can we make a more

https://anduowang.github.io/


active use of a problem’s context, by using that extra knowledge to better frame
and scope the diagnosis and reflecting on the diagnosis (reasoning) process it-
self, enable diagnosis formulation and test generation that directly reflect the
context [32,4,34]? These are just a few possibilities, of course. This extended
abstract presents an initial study of reflective network diagnosis, discussing its
effectiveness and feasibility.

2 Ongoing work

We identify two reflective use cases: the first complements current diagnosis that
focuses on what the network states are (detecting anomalies). We instead reason
about how and why the network arrives at an anomaly by reflecting on the
state-manipulating procedures. The second case seeks to go beyond context-free
tools developed in isolation. By developing an explicit account of context — such
as a motivating concern or a related operation that do not easily refactor into
traditional problem formulation — within diagnosis, and seek to bring into the
diagnosis a sharper focus.

Non-monotonic diagnosis of network procedures Network verification [9,35,30],
the most advanced tool today, reasons about network forwarding states (data),
but does not reflect on the procedures — protocols or software (data-manipulation
procedures) — that produce the states. Those state manipulation programs in
real networks, however, are interesting by themselves. A notable example is the
so called oscillation problem of Internet routing [12,13], in which the path compu-
tation of a set of uncoordinated routers (e.g., with conflicting path preferences)
fails to converge. Figure1 (left) depicts a subtle oscillation scenario reported in
[23]. Built atop this example, we propose reflective diagnosis Case I: Reflect on
how a network arrives at certain state, even when the procedure (e.g., protocols,
control software) generating the states is non-deterministic or non-terminating.

Ra(RR)

Rb Rc Re

Rd(RR)
cluster 1 cluster 2

AS10 AS6

AS100

AS1

5 4

1

12

(10) (1) (0) 1

2
3

s1

c2

4
s2

c1

block h4

h1→h2

h2→h3

10.0.0.0/8

c1s2(h4)

source dest
h1 c1 s1

h2 c2 s1

h3 c2 s2

h4 c1 s2

Fig. 1: (left) iBGP oscillation in AS1: reflectors Ra and Rd make route decisions
based on IGP path cost (in gray) and MED (in parenthesis). (right) c1 can send
packets to s2 and bypass the filter at 3.

2



Context-aware debugging of network states A second limitation we seek to ad-
dress is that existing diagnosis solutions often assume a well-defined problem in
a vacuum, but networks are “mundane”, and real problems almost always arise
from a specific context. To see the subtlety of “context”, consider the simple
network in Figure 1 (right). A network of 4 nodes (routers) is carrying traffic
between clients c1, c2 and servers s1, s2 that are divided into 4 flows (group of
packets), as shown in the table (so the first class h1 are those from c1 (source) to
s1). The arrows denote the next-hop of the forwarding action, and the hx → hy
label of a node says the header rewrite (of either a packet’s source or destination
field). So in addition to the usual packet forwarding (to the next-hop), node
1 turns flow h1 into h2. Node 3 also drops any packet in h4, thus acting as a
firewall blocking h4. Suppose the rewrites at 1, 4 are recently introduced, the
operator wants to know the impact of them on the firewall 3. Such context —
does two seemingly innocent rewrites collectively viloate a firewall? — does not
easily translate to well-supported diagnosis problems today. For example, reach-
ability diagnosis typically checks for certain (by default all) packets entering a
network at certain entry points. What are the right (relevant) flows and entries
to test? More generally, we propose reflective diagnosis Case II: Raise contexts
to first-class objects in the diagnosis process by (as a first step) using contexts
natively in the problem specification and directly in test generation, saving the
user from manually refactoring them in.

Implementation We built a prototype of the above reflective cases by enhanced
meta-interpreters in prolog [2,3,15]. Our key insight is that reflection [8,26] is
a specific form of meta-reasoning: reasoning about another reasoning process
which happens to be itself. Reflection thus aligns well with meta-programming,
meta-interpreters in particular, where a program treats another program (or
itself) as object data, which is well supported in Prolog [20,27,19,21], because
it does not distinguish between data and programs like its more conventional
counterparts and includes first-class meta-level constructs. In addition, Prolog
has a clear procedural reading -—- a sequential execution model — that makes
it remarkably suitable for capturing the operational complexities of network
procedures (e.g., routing). Based on these observations, we use meta-interpreters
as a reflection engine and an injection point for enhancements tailored to the
new proposed functions.

All implementations are fully tested on the latest stable version of XSB
5.0 (May 12, 2022) [31], and are publicly available [25]. The # of clauses (in
parenthesis) for the two cases is: iBGP (77), data-plane (19); Three enhanced
meta-interpreters for iBGP explaination (10), Two data-plane test generations
(5 for each). We also implemented a total of 46 utility clauses such as length/2
(for returning the length of a list) to avoid processing external libraries in the
meta-interpreter, and additional facilities like pretty_print to display an ex-
planation.

3



References

1. Abhashkumar, A., Gember-Jacobson, A., Akella, A.: Tiramisu: Fast multilayer
network verification. In: 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20) (2020)

2. Abramson, H., Rogers, M.H. (eds.): Meta-programming in logic programming. MIT
Press, Cambridge, MA, USA (1989)

3. Apt, K.R.: From logic programming to Prolog. Prentice-Hall, Inc., USA (1996)
4. Beckett, R., Mahajan, R.: Putting network verification to good use. In: Proceedings

of the 18th ACM Workshop on Hot Topics in Networks. HotNets ’19, Association
for Computing Machinery (2019). https://doi.org/10.1145/3365609.3365866,
https://doi.org/10.1145/3365609.3365866

5. Beckett, R., Mahajan, R., Millstein, T., Padhye, J., Walker, D.: Don’t mind the gap:
Bridging network-wide objectives and device-level configurations. In: Proceedings
of the 2016 ACM SIGCOMM Conference. pp. 328–341. SIGCOMM ’16, ACM,
New York, NY, USA (2016). https://doi.org/10.1145/2934872.2934909, http:
//doi.acm.org/10.1145/2934872.2934909

6. Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger,
C., Talayco, D., Vahdat, A., Varghese, G., Walker, D.: P4: Programming protocol-
independent packet processors. SIGCOMM Comput. Commun. Rev. 44(3), 87–95
(Jul 2014). https://doi.org/10.1145/2656877.2656890, http://doi.acm.org/
10.1145/2656877.2656890

7. Brown, M., Fogel, A., Halperin, D., Heorhiadi, V., Mahajan, R., Millstein, T.:
Lessons from the evolution of the batfish configuration analysis tool. In: Proceed-
ings of the ACM SIGCOMM 2023 Conference. p. 122–135. ACM SIGCOMM ’23,
Association for Computing Machinery, New York, NY, USA (2023). https://doi.
org/10.1145/3603269.3604866, https://doi.org/10.1145/3603269.3604866

8. Demers, J.M.F.N.: Reflection in logic, functional and object-oriented programming:
a short comparative study. In: IJCAI’95, Workshop on Reflection and Metalevel
Architectures and their Applications in AI. pp. 29–38 (1995), http://fparreiras/
papers/reflectionlogicfuncoocomparative.pdf

9. Fayaz, S.K., Sharma, T., Fogel, A., Mahajan, R., Millstein, T., Sekar, V., Varghese,
G.: Efficient network reachability analysis using a succinct control plane representa-
tion. In: Proceedings of the 12th USENIX Conference on Operating Systems Design
and Implementation. p. 217–232. OSDI’16, USENIX Association, USA (2016)

10. Fogel, A., Fung, S., Pedrosa, L., Walraed-Sullivan, M., Govindan, R., Mahajan,
R., Millstein, T.: A general approach to network configuration analysis. NSDI’15,
USENIX Association, USA (2015)

11. Gember-Jacobson, A., Viswanathan, R., Akella, A., Mahajan, R.: Fast control
plane analysis using an abstract representation. In: Proceedings of the 2016 ACM
SIGCOMM Conference. p. 300–313. SIGCOMM ’16, Association for Comput-
ing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2934872.
2934876, https://doi.org/10.1145/2934872.2934876

12. Griffin, T.G., Shepherd, F.B., Wilfong, G.: The stable paths problem and interdo-
main routing. IEEE Trans. on Networking 10, 232–243 (2002)

13. Griffin, T.G., Wilfong, G.: An analysis of BGP convergence properties. In: SIG-
COMM (1999)

14. Guo, D., Chen, S., Gao, K., Xiang, Q., Zhang, Y., Yang, Y.R.: Flash: Fast, consis-
tent data plane verification for large-scale network settings. In: Proceedings of the
ACM SIGCOMM 2022 Conference. p. 314–335. SIGCOMM ’22, Association for

4

https://doi.org/10.1145/3365609.3365866
https://doi.org/10.1145/3365609.3365866
https://doi.org/10.1145/3365609.3365866
https://doi.org/10.1145/2934872.2934909
https://doi.org/10.1145/2934872.2934909
http://doi.acm.org/10.1145/2934872.2934909
http://doi.acm.org/10.1145/2934872.2934909
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
http://doi.acm.org/10.1145/2656877.2656890
http://doi.acm.org/10.1145/2656877.2656890
https://doi.org/10.1145/3603269.3604866
https://doi.org/10.1145/3603269.3604866
https://doi.org/10.1145/3603269.3604866
https://doi.org/10.1145/3603269.3604866
https://doi.org/10.1145/3603269.3604866
http://fparreiras/papers/reflectionlogicfuncoocomparative.pdf
http://fparreiras/papers/reflectionlogicfuncoocomparative.pdf
https://doi.org/10.1145/2934872.2934876
https://doi.org/10.1145/2934872.2934876
https://doi.org/10.1145/2934872.2934876
https://doi.org/10.1145/2934872.2934876
https://doi.org/10.1145/2934872.2934876


Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/
3544216.3544246, https://doi.org/10.1145/3544216.3544246

15. Hill, P.M., Gallagher, J.: Meta-Programming in Logic Programming. In: Handbook
of Logic in Artificial Intelligence and Logic Programming: Volume 5: Logic Pro-
gramming. Oxford University Press (01 1998). https://doi.org/10.1093/oso/
9780198537922.003.0010, https://doi.org/10.1093/oso/9780198537922.003.
0010

16. Jayaraman, K., Bjørner, N., Padhye, J., Agrawal, A., Bhargava, A., Bissonnette,
P.A.C., Foster, S., Helwer, A., Kasten, M., Lee, I., Namdhari, A., Niaz, H., Parkhi,
A., Pinnamraju, H., Power, A., Raje, N.M., Sharma, P.: Validating datacenters at
scale. In: Proceedings of the ACM Special Interest Group on Data Communication.
p. 200–213. SIGCOMM ’19, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3341302.3342094, https://doi.org/10.
1145/3341302.3342094

17. Kazemian, P., Chang, M., Zeng, H., Varghese, G., McKeown, N., Whyte, S.: Real
time network policy checking using header space analysis. In: Proceedings of the
10th USENIX Conference on Networked Systems Design and Implementation. p.
99–112. nsdi’13, USENIX Association, USA (2013)

18. Khurshid, A., Zhou, W., Caesar, M., Godfrey, P.B.: Veriflow: Verifying network-
wide invariants in real time. In: Proceedings of the First Workshop on Hot Topics
in Software Defined Networks. p. 49–54. HotSDN ’12, Association for Comput-
ing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2342441.
2342452, https://doi.org/10.1145/2342441.2342452

19. Kowalski, R.: Logic programming. In: Siekmann, J.H. (ed.) Compu-
tational Logic, Handbook of the History of Logic, vol. 9, pp. 523–
569. North-Holland (2014). https://doi.org/https://doi.org/10.1016/
B978-0-444-51624-4.50012-5, https://www.sciencedirect.com/science/
article/pii/B9780444516244500125

20. Körner, P., Leuschel, M., Barbosa, J., Costa, V.S., Dahl, V., Hermenegildo, M.V.,
Morales, J.F., Wielemaker, J., Diaz, D., Abreu, S., Ciatto, G.: Fifty years of prolog
and beyond (2022)

21. Lloyd, J.W.: Foundations of logic programming; (2nd extended ed.). Springer-
Verlag, Berlin, Heidelberg (1987)

22. Making Networks Safe and Agile with Formal Methods and Programming Ab-
stractions: Future Directions: http://tinyurl.com/2by799dz/. NSF Workshop on
Long-Term Research Directions in Wired Networking, Cornell Tech, Roosevelt Is-
land, New York City, September 15-15, 2023

23. McPherson, D., Gill, V., Walton, D., Retana, A.: Border Gateway Protocol (BGP)
persistent route oscillation condition (RFC 3345, 2002)

24. Plotkin, G.D., Bjørner, N., Lopes, N.P., Rybalchenko, A., Varghese, G.: Scal-
ing network verification using symmetry and surgery. In: Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL ’16, Association for Computing Machinery, New York, NY,
USA (2016). https://doi.org/10.1145/2837614.2837657, https://doi.org/10.
1145/2837614.2837657

25. Prolog implementation:: https://github.com/wadaries/
reflective-diagnosis-padl25-extended-abstract.git

26. Smith, B.C.: Procedural Reflection in Programming Languages. Ph.D. thesis,
Massachusetts Institute of Technology, Laboratory for Computer Science (1982),
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-272.pdf

5

https://doi.org/10.1145/3544216.3544246
https://doi.org/10.1145/3544216.3544246
https://doi.org/10.1145/3544216.3544246
https://doi.org/10.1145/3544216.3544246
https://doi.org/10.1145/3544216.3544246
https://doi.org/10.1093/oso/9780198537922.003.0010
https://doi.org/10.1093/oso/9780198537922.003.0010
https://doi.org/10.1093/oso/9780198537922.003.0010
https://doi.org/10.1093/oso/9780198537922.003.0010
https://doi.org/10.1093/oso/9780198537922.003.0010
https://doi.org/10.1093/oso/9780198537922.003.0010
https://doi.org/10.1145/3341302.3342094
https://doi.org/10.1145/3341302.3342094
https://doi.org/10.1145/3341302.3342094
https://doi.org/10.1145/3341302.3342094
https://doi.org/10.1145/2342441.2342452
https://doi.org/10.1145/2342441.2342452
https://doi.org/10.1145/2342441.2342452
https://doi.org/10.1145/2342441.2342452
https://doi.org/10.1145/2342441.2342452
https://doi.org/https://doi.org/10.1016/B978-0-444-51624-4.50012-5
https://doi.org/https://doi.org/10.1016/B978-0-444-51624-4.50012-5
https://doi.org/https://doi.org/10.1016/B978-0-444-51624-4.50012-5
https://doi.org/https://doi.org/10.1016/B978-0-444-51624-4.50012-5
https://www.sciencedirect.com/science/article/pii/B9780444516244500125
https://www.sciencedirect.com/science/article/pii/B9780444516244500125
http://tinyurl.com/2by799dz/
https://doi.org/10.1145/2837614.2837657
https://doi.org/10.1145/2837614.2837657
https://doi.org/10.1145/2837614.2837657
https://doi.org/10.1145/2837614.2837657
https://github.com/wadaries/reflective-diagnosis-padl25-extended-abstract.git
https://github.com/wadaries/reflective-diagnosis-padl25-extended-abstract.git
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-272.pdf


27. Sterling, L., Shapiro, E.: The art of Prolog (2nd ed.): advanced programming tech-
niques. MIT Press, Cambridge, MA, USA (1994)

28. The Future of Networking, and the Past of Protocols: http://www.opennetsummit.
org/archives/apr12/site/talks/shenker-tue.pdf

29. Vahdat, A., Clark, D., Rexford, J.: A purpose-built global network: Google’s move
to sdn. Queue 13(8), 100:100–100:125 (Oct 2015). https://doi.org/10.1145/
2838344.2856460, http://doi.acm.org/10.1145/2838344.2856460

30. Xie, G., Zhan, J., Maltz, D., Zhang, H., Greenberg, A., Hjalmtysson, G., Rexford,
J.: On static reachability analysis of ip networks. In: Proceedings IEEE 24th Annual
Joint Conference of the IEEE Computer and Communications Societies. (2005).
https://doi.org/10.1109/INFCOM.2005.1498492

31. XSB homepage: https://xsb.sourceforge.net/
32. Xu, X., Beckett, R., Jayaraman, K., Mahajan, R., Walker, D.: Test coverage metrics

for the network. In: Proceedings of the 2021 ACM SIGCOMM 2021 Conference. p.
775–787. SIGCOMM ’21, Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3452296.3472941, https://doi.org/10.
1145/3452296.3472941

33. Ye, F., Yu, D., Zhai, E., Liu, H.H., Tian, B., Ye, Q., Wang, C., Wu, X., Guo,
T., Jin, C., She, D., Ma, Q., Cheng, B., Xu, H., Zhang, M., Wang, Z., Fonseca,
R.: Accuracy, scalability, coverage: A practical configuration verifier on a global
wan. In: Proceedings of the Annual Conference of the ACM Special Interest Group
on Data Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication. p. 599–614. SIGCOMM ’20, Association
for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.
1145/3387514.3406217, https://doi.org/10.1145/3387514.3406217

34. Zeng, H., Kazemian, P., Varghese, G., McKeown, N.: Automatic test packet gener-
ation. In: Proceedings of the 8th International Conference on Emerging Networking
Experiments and Technologies. p. 241–252. CoNEXT ’12, Association for Comput-
ing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2413176.
2413205, https://doi.org/10.1145/2413176.2413205

35. Zhang, P., Liu, X., Yang, H., Kang, N., Gu, Z., Li, H.: Apkeep: Realtime ver-
ification for real networks. In: 17th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 20). pp. 241–255. USENIX Associa-
tion, Santa Clara, CA (Feb 2020), https://www.usenix.org/conference/nsdi20/
presentation/zhang-peng

6

http://www.opennetsummit.org/archives/apr12/site/talks/shenker-tue.pdf
http://www.opennetsummit.org/archives/apr12/site/talks/shenker-tue.pdf
https://doi.org/10.1145/2838344.2856460
https://doi.org/10.1145/2838344.2856460
https://doi.org/10.1145/2838344.2856460
https://doi.org/10.1145/2838344.2856460
http://doi.acm.org/10.1145/2838344.2856460
https://doi.org/10.1109/INFCOM.2005.1498492
https://doi.org/10.1109/INFCOM.2005.1498492
https://xsb.sourceforge.net/
https://doi.org/10.1145/3452296.3472941
https://doi.org/10.1145/3452296.3472941
https://doi.org/10.1145/3452296.3472941
https://doi.org/10.1145/3452296.3472941
https://doi.org/10.1145/3387514.3406217
https://doi.org/10.1145/3387514.3406217
https://doi.org/10.1145/3387514.3406217
https://doi.org/10.1145/3387514.3406217
https://doi.org/10.1145/3387514.3406217
https://doi.org/10.1145/2413176.2413205
https://doi.org/10.1145/2413176.2413205
https://doi.org/10.1145/2413176.2413205
https://doi.org/10.1145/2413176.2413205
https://doi.org/10.1145/2413176.2413205
https://www.usenix.org/conference/nsdi20/presentation/zhang-peng
https://www.usenix.org/conference/nsdi20/presentation/zhang-peng

	Enhancing network diagnosis with reflection in Prolog

